Publications by authors named "Jennifer R Turkington"

A series of 22 tridentate unsaturated mono-anionic ligands having the atom-sequence Y-C[double bond, length as m-dash]C-N=CH-C=C-Z(-1), with Y = N, O, or S and Z = O or S, has been studied to establish whether this backbone could be used to develop strong solvent extractants for nickel(II) which will preferably also show a high selectivity over iron(III) in the pH-dependent process: 2LH(org) + NiSO4 ⇌ [(L)2Ni]org + H2SO4. All are capable of forming octahedral [(L)2Ni] complexes with a mer-arrangement of the YNZ(-1) donor set. X-ray crystal structures of three salicylaldimine proligands derived from 3-bromo-5-t-butyl-2-hydroxybenzaldehyde show these to have pre-organised donor sets in which the three donors are held in an approximately orthogonal arrangement by intramolecular hydrogen bonds.

View Article and Find Full Text PDF

The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes.

View Article and Find Full Text PDF

Interactions, particularly hydrogen bonds, between ligands in the outer coordination spheres of metal complexes have a major effect on their stabilities in the hydrocarbon solvents used in commercial solvent extraction and it is now possible to use these interactions to tune the strength and selectivity of extractants.

View Article and Find Full Text PDF

Eight new amido functionalized reagents, L(1)-L(8), have been synthesized containing the sequence of atoms R(2)N-CH(2)-NR'-CO-R″, which upon protonation forms a six-membered chelate with a hydrogen bond between the tertiary ammonium N-H(+) group and the amido oxygen atom. The monocationic ligands, LH(+), extract tetrachloridometal(II)ates from acidic solutions containing high concentrations of chloride ions via a mechanism in which two ligands address the "outer sphere" of the [MCl(4)](2-) unit using both N-H and C-H hydrogen bond donors to form the neutral complex as in 2L + 2HCl + MCl(2) ⇌ [(LH)(2)MCl(4)]. The strengths of L(1)-L(8) as zinc extractants in these pH-dependent equilibria have been shown to be very dependent on the number of amide groups in the R(3-n)N(CH(2)NR'COR″)(n) molecules, anti-intuitively decreasing with the number of strong hydrogen bond donors present and following the order monoamides > diamides > triamides.

View Article and Find Full Text PDF

Four new sterically hindered pyridines, L(1)-L(4)-containing amido substituents at the 2-position act as efficient solvent extractants for [CoCl(4)](2-) or [ZnCl(4)](2-) from acidic chloride solutions through protonation of the pyridino N-centre to form the neutral outer-sphere complexes [(LH)(2)MCl(4)]. These ionophores show very high selectivity for chlorometallate anions over chloride ion and are readily stripped to liberate the free-metal chlorides without the formation of inner-sphere complexes [ML(2)Cl(2)]. Single-crystal X-ray structure determinations of [(L(2)H)(2)CoCl(4)] and [(L(2)H)(2)ZnCl(4)] (L(2) = 2-(4,6-di-tert-butylpyridin-2-yl)-N,N'-dihexylmalonamide) coupled with (1)H NMR spectroscopy and DFT calculations on L(2)H(+) and other complexes of [ZnCl(4)](2-) confirm that the pyridinium NH group does not address the outer co-ordination sphere of the metallanion, but rather forms a hydrogen bond to the pendant amide groups and thus pre-organizes the ligand to present both C-H and amido N-H hydrogen-bond donors to the [MCl(4)](2-) ions.

View Article and Find Full Text PDF