Publications by authors named "Jennifer R Tisoncik"

The cytokine storm has captured the attention of the public and the scientific community alike, and while the general notion of an excessive or uncontrolled release of proinflammatory cytokines is well known, the concept of a cytokine storm and the biological consequences of cytokine overproduction are not clearly defined. Cytokine storms are associated with a wide variety of infectious and noninfectious diseases. The term was popularized largely in the context of avian H5N1 influenza virus infection, bringing the term into popular media.

View Article and Find Full Text PDF

Unlabelled: We previously reported widespread differential expression of long non-protein-coding RNAs (ncRNAs) in response to virus infection. Here, we expanded the study through small RNA transcriptome sequencing analysis of the host response to both severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza virus infections across four founder mouse strains of the Collaborative Cross, a recombinant inbred mouse resource for mapping complex traits. We observed differential expression of over 200 small RNAs of diverse classes during infection.

View Article and Find Full Text PDF

The NS1 protein of influenza virus counters host antiviral defences primarily by antagonizing the type I interferon (IFN) response. Both the N-terminal dsRNA-binding domain and the C-terminal effector domain are required for optimal suppression of host responses during infection. To better understand the regulatory role of the NS1 effector domain, we used an NS1-truncated mutant virus derived from human H1N1 influenza isolate A/Texas/36/91 (Tx/91) and assessed global transcriptional profiles from two independent human lung cell-culture models.

View Article and Find Full Text PDF

Background: Influenza neuraminidase (NA) is essential for virus release from its host cells and it is one of the targets for structure-based antiviral drug design.

Results: In this report, we established a pseudoviral particle release assay to study NA function, which is based on lentiviral particles pseudotyped with influenza glycoproteins HA and NA as a surrogate system. Through an extensive molecular analysis, we sought to characterize important residues governing NA function.

View Article and Find Full Text PDF

The PB1-F2 protein of influenza A virus can contribute to viral pathogenesis of influenza virus strains. Of note, an N66S amino acid mutation in PB1-F2 has been shown to increase the pathogenesis associated with H5N1 Hong Kong/1997 and H1N1 Brevig Mission/1918 influenza viruses. To identify the mechanism of enhanced immunopathology, we evaluated the host response to two isogenic viruses that differ by a single amino acid at position 66 of the PB1-F2 protein.

View Article and Find Full Text PDF

The influenza pandemic of 1918 to 1919 was one of the worst global pandemics in recent history. The highly pathogenic nature of the 1918 virus is thought to be mediated in part by a dysregulation of the host response, including an exacerbated proinflammatory cytokine response. In the present study, we compared the host transcriptional response to infection with the reconstructed 1918 virus in wild-type, tumor necrosis factor (TNF) receptor-1 knockout (TNFRKO), and interleukin-1 (IL-1) receptor-1 knockout (IL1RKO) mice as a means of further understanding the role of proinflammatory cytokine signaling during the acute response to infection.

View Article and Find Full Text PDF

Sporadic outbreaks of epizootics including SARS coronavirus and H5N1 avian influenza remind us of the potential for communicable diseases to quickly spread into worldwide epidemics. To confront emerging viral threats, nations have implemented strategies to prepare for pandemics and to control virus spread. Despite improved surveillance and quarantine measures, we find ourselves in the midst of a H1N1 influenza pandemic.

View Article and Find Full Text PDF