Background: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. While PD-1 based immunotherapies overall have led to improved treatment outcomes for this disease, a diverse response to frontline chemotherapy and immunotherapy still exist in TNBC, highlighting the need for more robust prognostic markers.
Methods: Tumor-intrinsic immunotranscriptomics, serum cytokine profiling, and tumor burden studies were conducted in two syngeneic mouse models to assess differential effects in both the early-stage and metastatic setting.
Background: We developed a whole transcriptome sequencing (WTS)-based Consensus Molecular Subtypes (CMS) classifier using FFPE tissue and investigated its prognostic and predictive utility in a large clinico-genomic database of CRC patients (n = 24,939).
Methods: The classifier was trained against the original CMS datasets using an SVM model and validated in an independent blinded TCGA dataset (88.0% accuracy).
Health disparities present a barrier to successful oncology treatment. The potential for precision oncology to reduce health disparities has not previously been analyzed. We performed a retrospective analysis of 12,627 patients from six major cancer centers whose tumors underwent molecular testing at Caris Life Sciences between 2010 and 2020.
View Article and Find Full Text PDFBackground: TROP2 (TACSTD2) expression is associated with decreased overall survival (OS) in some solid tumors, and the TROP2-targeting antibody-drug conjugate (ADC) sacituzumab govitecan has been approved in breast and urothelial carcinomas. We aimed to explore the multi-omic landscape associated with TACSTD2 gene expression in various solid tumors to identify patients most likely to benefit from this approach.
Methods: Breast (N = 11 246), colorectal (N = 15 425), hepatocellular (N = 433), pancreatic (N = 5488), and urothelial (N = 4125) tumors were stratified into quartiles by TACSTD2 gene expression, analyzed by next-generation DNA sequencing, whole transcriptome sequencing, and immunohistochemistry at Caris Life Sciences (Phoenix, AZ).
Melanoma brain metastases (MBM) are clinically challenging to treat and exhibit variable responses to immune checkpoint therapies. Prior research suggests that MBM exhibit poor tumor immune responses and are enriched in oxidative phosphorylation. Here, we report results from a multi-omic analysis of a large, real-world melanoma cohort.
View Article and Find Full Text PDFPurpose: Using a real-world database with matched genomic-transcriptomic molecular data, we sought to characterize the distinct molecular correlates underlying clinical differences between patients with young-onset pancreatic cancer (YOPC; younger than 50 years) and patients with average-onset pancreatic cancer (AOPC; 70 years and older).
Methods: We analyzed matched whole-transcriptome and DNA sequencing data from 2,430 patient samples (YOPC, n = 292; AOPC, n = 2,138) from the Caris Life Sciences database (Phoenix, AZ). Immune deconvolution was performed using the quanTIseq pipeline.
Objectives: To identify differential survival outcomes and immune checkpoint inhibitor (ICI) response in MLH1 hypermethylated versus MLH1 mutated ("Lynch-like") endometrial tumors and determine whether their molecular profiles can elucidate the differential outcomes.
Methods: 1673 mismatch repair deficient endometrial tumors were analyzed by next-generation sequencing and whole transcriptome sequencing (Caris Life Sciences, Phoenix, AZ). PD-L1, ER, and PR were tested by immunohistochemistry and immune cell infiltrates were calculated using MCP-counter.
Purpose: Recurrent gene mutations in speckle-type POZ protein (), the substrate-binding component of E3 ubiquitin ligase, are associated with tumor progression in prostate and endometrial cancers. Here, we characterized mutations in these cancers and explored their association with molecular and immune signatures and patient outcomes.
Methods: There were 7,398 prostate cancer and 19,188 endometrial cancer samples analyzed for clinical and molecular profiles at Caris Life Sciences.
Purpose: Using a real-world database with matched genomic-transcriptomic molecular data, we sought to characterize the distinct molecular correlates underlying clinical differences between young-onset pancreatic cancer (YOPC; <50-yrs.) and average-onset pancreatic cancer (AOPC; ≥70-yrs.) patients.
View Article and Find Full Text PDFObjective: HER2 status is not routinely evaluated in endometrioid endometrial cancer (E-EMCA), though it is frequently overexpressed or amplified in high grade E-EMCA and uterine serous carcinoma. Defining characteristics and survival outcomes of HER2+ E-EMCA could reveal subsets of patients who may benefit from targeted therapies.
Methods: 2927 E-EMCA tumors from the Caris Life Sciences database were analyzed by next-generation sequencing and whole exome sequencing, whole transcriptome sequencing, and immunohistochemistry for molecular and genomic features in a CLIA/CAP-certified laboratory (Caris Life Sciences, Phoenix, AZ).
The high rate of ovarian cancer recurrence and chemoresistance necessitates further research into how chemotherapy affects the tumor immune microenvironment (TIME). While studies have shown that immune infiltrate increases following neoadjuvant (NACT) chemotherapy, there lacks a comprehensive understanding of chemotherapy-induced effects on immunotranscriptomics and cancer-related pathways and their relationship with immune infiltrate and patient responses. In this study, we performed NanoString nCounter PanCancer IO360 analysis of 31 high grade serous ovarian cancer (HGSOC) patients with matched pre-treatment biopsy and post-NACT tumor.
View Article and Find Full Text PDFHuman epididymis protein-4 (HE4/WFDC2) has been well-studied as an ovarian cancer clinical biomarker. To improve our understanding of its functional role in high grade serous ovarian cancer, we determined transcriptomic differences between ovarian tumors with high- versus low-WFDC2 mRNA levels in The Cancer Genome Atlas dataset. High-WFDC2 transcript levels were significantly associated with reduced survival in stage III/IV serous ovarian cancer patients.
View Article and Find Full Text PDFPatients with ovarian cancer exhibit low response rates to anti-programmed cell death protein-1 (PD-1) based therapies, despite ovarian tumors demonstrating measurable immune responses. Therefore, the aim of the present study was to comparatively examine expression of notable immune co-stimulatory and co-inhibitory receptors in order identify the most abundant receptors that could potentially serve as therapeutic targets to enhance immunotherapy response in high grade serous ovarian cancer (HGSOC). The Cancer Genome Atlas (TCGA) was employed to compare levels of various HGSOC and pan-cancer cohorts.
View Article and Find Full Text PDFEpithelial Ovarian Cancer (EOC) is a deadly gynecologic malignancy in which patients frequently develop recurrent disease following initial platinum-taxane chemotherapy. Analogous to many other cancer subtypes, EOC clinical trials have centered upon immunotherapeutic approaches, most notably programmed cell death 1 (PD-1) inhibitors. While response rates to these immunotherapies in EOC patients have been low, evidence suggests that ovarian tumors are immunogenic and that immune-related genomic profiles can serve as prognostic markers.
View Article and Find Full Text PDFOvarian cancer is a highly fatal malignancy characterized by early chemotherapy responsiveness but the eventual development of resistance. Immune targeting therapies are changing treatment paradigms for numerous cancer types but have had minimal success in ovarian cancer. Through retrospective patient sample analysis, we have determined that high human epididymis protein 4 (HE4) production correlates with multiple markers of immune suppression in ovarian cancer, including lower CD8 T cell infiltration, higher PD-L1 expression, and an increase in the peripheral monocyte to lymphocyte ratio.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, with an overall 5-year survival of only 47%. As the development of novel targeted therapies is drastically necessary in order to improve patient survival, current EOC clinical trials have heavily focused on immunotherapeutic approaches, centered upon programmed cell death 1 (PD-1) inhibitors. While PD-1 monotherapies have only exhibited modest responses for patients, it has been theorized that in order to enhance EOC patient response to immunotherapy, combinatorial regimens must be investigated.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is a highly lethal gynecologic malignancy arising from the fallopian tubes that has a high rate of chemoresistant recurrence and low five-year survival rate. The ovarian cancer biomarker HE4 is known to promote proliferation, metastasis, chemoresistance, and suppression of cytotoxic lymphocytes. In this study, we sought to examine the effects of HE4 on signaling within diverse cell types that compose the tumor microenvironment.
View Article and Find Full Text PDFDual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6's role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone.
View Article and Find Full Text PDFHuman epididymis protein 4 (HE4) is an important clinical biomarker used for the detection of epithelial ovarian cancer (EOC). While much is known about the predictive power of HE4 clinically, less has been reported regarding its molecular role in the progression of EOC. A deeper understanding of HE4's mechanistic functions may help contribute to the development of novel targeted therapies.
View Article and Find Full Text PDFHuman epididymis protein 4 (HE4) has received much attention recently due to its diagnostic and prognostic abilities for epithelial ovarian cancer. Since its inclusion in the Risk of Ovarian Malignancy Algorithm (ROMA), studies have focused on its functional effects in ovarian cancer. Here, we aimed to investigate the role of HE4 in invasion, haptotaxis, and adhesion of ovarian cancer cells.
View Article and Find Full Text PDFCisplatin and its analogs are among the most widely used chemotherapeutic agents against various types of cancer. It is known that cisplatin can activate epidermal growth factor receptor (EGFR), which may provide a survival benefit in cancers. Tetrathiomolybdate (TM) is a potent anti-cancer and anti-angiogenic agent and has been investigated in a number of clinical trials for cancer.
View Article and Find Full Text PDF