We have previously shown that nicotine, the addictive component of tobacco products, alters the blood-brain barrier (BBB) Na(+),K(+),2Cl(-) cotransporter (NKCC) during in vitro hypoxia-aglycemia exposure. Attenuation of abluminal NKCC suggests that accumulation of ions in the brain extracellular fluid would result in an increase of fluid or cytotoxic edema in the brain during hypoxia-aglycemia or stroke conditions. To further investigate whether nicotine products have the potential to worsen stroke outcome by increasing edema formation, two separate models to mimic stroke conditions were utilized to decipher the effects of short-term and long-term administrations of nicotine products on brain edema following stroke.
View Article and Find Full Text PDFSmoking tobacco, including cigarettes, has been associated with an increased incidence and relative risk for cerebral infarction in both men and women. Recently, we have shown that nicotine and cotinine attenuate abluminal (brain facing) K(+) uptake mediated by the Na,K,2Cl-cotransporter (NKCC) in bovine brain microvessel endothelial cells (BBMECs) after hypoxic/aglycemic exposure (stroke conditions). The purpose of the current study was to explore the effects of nicotine and tobacco smoke chemicals on K(+) movement through the blood-brain barrier during both hypoxia/aglycemia and reoxygenation.
View Article and Find Full Text PDFNicotine, a major constituent of tobacco smoke, has important effects on brain recovery after focal ischemia (Wang et al., 1997). The purpose of this work is to systematically test the effects of nicotine during stroke conditions on blood-brain barrier (BBB) potassium transport, protein expression of the Na,K,2Cl-cotransporter (NKCC), and cell signaling pathways that control NKCC activity at the BBB.
View Article and Find Full Text PDF