Selectivities that deviate from S(N)1 stereoelectronic models in the nucleophilic substitutions of tetrahydropyran acetals were investigated. When weak nucleophiles were employed, stereoselectivities conformed to known S(N)1 stereoelectronic models. In contrast, stereoselectivities in the substitutions of acetals with strong nucleophiles depended on reaction conditions.
View Article and Find Full Text PDFThe effect of nucleophile strength on diastereoselectivity in the nucleophilic substitution of cyclic acetals was explored. Stereoselectivity remained constant and high as nucleophilicity increased until a threshold value was reached. Beyond this point, however, selection of Lewis acid determined whether stereochemical inversion or erosion was observed.
View Article and Find Full Text PDFThis work details an in-depth evaluation of an unprecedented mechanism for the hydrosilylation of carbonyl compounds catalyzed by (PPh3)2Re(O)2I. The proposed mechanism involves addition of a silane Si-H bond across one of the rhenium-oxo bonds to form siloxyrhenium hydride intermediate 2 that reacts with a carbonyl substrate to generate siloxyrhenium alkoxide 4, which, in turn, affords the silyl ether product. Compelling evidence for the operation of this pathway includes the following: (a) isolation and structural characterization by X-ray diffraction of siloxyrhenium hydride intermediate 2, (b) demonstration of the catalytic competence of intermediate 2 in the hydrosilylation reaction, (c) 1H and 31P{1H} NMR and ESI-MS evidence for single-turnover conversion of 2 into 1, (d) observation of intermediate 2 in the working catalyst system, and (e) kinetic analysis of the catalytic hydrosilylation of carbonyl compounds by 1.
View Article and Find Full Text PDFProtonolysis of the dimethylrhenium(III) compound Cp(PMe(3))(2)Re(CH(3))(2) (3) led to formation of the highly reactive hydridorhenium methylidene compound [Cp(PMe(3))(2)Re(CH(2))(H)][OTf] (4), which was characterized spectroscopically at low temperature. Although 4 decomposed above -30 degrees C, reactivity studies performed at low temperature indicated it was in equilibrium with the coordinatively unsaturated methylrhenium complex [Cp(PMe(3))(2)Re(CH(3))][OTf] (2). Methylidene complex 4 was found to react with PMe(3) to afford [Cp(PMe(3))(3)Re(CH(3))][OTf] (6) and with chloride anion to give Cp(PMe(3))(2)Re(Me)Cl (7).
View Article and Find Full Text PDFThe synthesis and structural properties of three new hydridorhodium(III) complexes are reported. Hydrogenolysis of the cyclometalated rhodium dichloride complexes [RhCl(2)[(S,S)-benbox(Me(2))]] (2a-c) leads to formation of the new complexes [RhCl(2)(H)[(S,S)-ip-benbox(Me(2))H]] (3a-c) in 45% to 85% yield. Compounds 3a-c were found to have unusual features by NMR spectroscopy: in particular, downfield shifted aryl proton resonances (8.
View Article and Find Full Text PDF