Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored.
View Article and Find Full Text PDFModulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored.
View Article and Find Full Text PDFUnderstanding the cell biology of protein trafficking and homeostasis requires reproducible methods for identifying and quantifying proteins within cells or cellular structures. Imaging protocols for measuring punctate protein accumulation in linear structures, for example the neurites of have relied on proprietary software for a full range of analysis capabilities. Here we describe a set of macros written for the NIH-supported imaging software ImageJ or Fiji (Fiji is Just ImageJ) that reliably identify protein puncta so that they can be analyzed with respect to intensity, density, and width at half-maximum intensity (Full-Width, Half-Maximum, FWHM).
View Article and Find Full Text PDFIn DAF-7/TGF-beta signaling regulates development, metabolism, and behavior. In addition loss of leads to an increase of the glutamate receptor GLR-1. In mutants, GLR-1 tagged with GFP (GLR-1::GFP) accumulates in wide puncta along the ventral nerve cord of the animal.
View Article and Find Full Text PDFQuantitative imaging of synaptic vesicle localization and abundance using fluorescently labeled synaptic vesicle associated proteins like GFP::SNB-1 is a well-established method for measuring changes in synapse structure at neuromuscular junctions (NMJ) in . To date, however, the ability to easily and reproducibly measure key parameters at the NMJ - maximum intensity, size of GFP::SNB-1 puncta, density of puncta - has relied on the use of expensive, customizable software that requires coding skills to modify, precluding widespread access and thus preventing standardization within the field. We carried out a comparative evaluation of a new, open-source Fiji puncta plugin versus traditional Igor-based analysis of GFP::SNB-1 imaging data taken of cholinergic motor neurons in the dorsal nerve cord of loss of function mutants in , which encodes a G protein-coupled receptor known to impact GFP::SNB-1 accumulation.
View Article and Find Full Text PDFRegulation of excitatory to inhibitory signaling balance is essential to nervous system health and is maintained by numerous enzyme systems that modulate the activity, localization, and abundance of synaptic proteins. SUMOylation is a key post-translational regulator of protein function in diverse cells, including neurons. There, its role in regulating synaptic transmission through pre- and postsynaptic effects has been shown primarily at glutamatergic central nervous system synapses, where the sole SUMO-conjugating enzyme Ubc9 is a critical player.
View Article and Find Full Text PDFProtein expression and localization are often studied in vivo by tagging molecules with green fluorescent protein (GFP), yet subtle changes in protein levels are not easily detected. To develop a sensitive in vivo method to amplify fluorescence signals and allow cell-specific quantification of protein abundance changes, we sought to apply an enzyme-activated cellular fluorescence system in vivo by delivering ester-masked fluorophores to Caenorhabditis elegans neurons expressing porcine liver esterase (PLE). To aid uptake into sensory neuron membranes, we synthesized two novel fluorogenic hydrolase substrates with long hydrocarbon tails.
View Article and Find Full Text PDFClassroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules.
View Article and Find Full Text PDFThe regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted.
View Article and Find Full Text PDFRegulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed in numerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission.
View Article and Find Full Text PDFPosttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs). The balance of activity of these enzymes determines the localization, function, and stability of target proteins.
View Article and Find Full Text PDFThe transport of glutamate receptors from the cell body to synapses is essential during neuronal development and may contribute to the regulation of synaptic strength in the mature nervous system. We previously showed that cyclin-dependent kinase-5 (CDK-5) positively regulates the abundance of GLR-1 glutamate receptors at synapses in the ventral nerve cord (VNC) of Caenorhabditis elegans. Here we identify a kinesin-3 family motor klp-4/KIF13 in a cdk-5 suppressor screen for genes that regulate GLR-1 trafficking.
View Article and Find Full Text PDFUbiquitin-mediated endocytosis and post-endocytic trafficking of glutamate receptors control their synaptic abundance and are implicated in modulating synaptic strength. Ubiquitination is a reversible modification, but the identities and specific functions of deubiquitinating enzymes in the nervous system are lacking. Here, we show that the deubiquitinating enzyme ubiquitin-specific protease-46 (USP-46) regulates the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of Caenorhabditis elegans.
View Article and Find Full Text PDFEndothelial cell ICAM-1 interacts with leukocyte beta(2) integrins to mediate adhesion and transmit outside-in signals that facilitate leukocyte transmigration. ICAM-1 redistribution and clustering appear necessary for leukocyte transmigration, but the mechanisms controlling ICAM-1 redistribution and clustering have not been identified. We recently reported that Src kinase phosphorylation of endothelial cortactin regulates polymorphonuclear cell (PMN) transmigration.
View Article and Find Full Text PDFThe underlying mechanisms that regulate leukocyte transendothelial migration through the vascular endothelium remain unclear. Cortactin is a substrate of Src tyrosine kinases and a regulator of cytoskeletal dynamics. Previous studies demonstrated a role for Src phosphorylation of cortactin in clustering of E-selectin and intercellular cell adhesion molecule-1 around adherent leukocytes.
View Article and Find Full Text PDFCortactin is an actin-associated scaffolding protein that regulates cell migration. Amplification of the human gene, EMS1, has been detected in breast, head and neck tumors, where it correlates with increased invasiveness. Cortactin can regulate actin dynamics directly via its N-terminal half, which can bind and activate the Arp2/3 complex.
View Article and Find Full Text PDF