Publications by authors named "Jennifer Putman"

Experience- and activity-dependent transcription is a candidate mechanism to mediate development and refinement of specific cortical circuits. Here, we demonstrate that the activity-dependent transcription factor myocyte enhancer factor 2C (MEF2C) is required in both presynaptic layer (L) 4 and postsynaptic L2/3 mouse (male and female) somatosensory (S1) cortical neurons for development of this specific synaptic connection. While postsynaptic deletion of weakens L4 synaptic inputs, it has no effect on inputs from local L2/3, contralateral S1, or the ipsilateral frontal/motor cortex.

View Article and Find Full Text PDF

Subcortical white matter ischemic lesions are increasingly recognized to have pathologic overlap in individuals with Alzheimer's disease (AD). The interaction of white matter ischemic lesions with amyloid pathology seen in AD is poorly characterized. We designed a novel mouse model of subcortical white matter ischemic stroke and AD that can inform our understanding of the cellular and molecular mechanisms of mixed vascular and AD dementia.

View Article and Find Full Text PDF

Ischemic injury to white matter tracts is increasingly recognized to play a key role in age-related cognitive decline, vascular dementia, and Alzheimer's disease. Knowledge of the effects of ischemic axonal injury on cortical neurons is limited yet critical to identifying molecular pathways that link neurodegeneration and ischemia. Using a mouse model of subcortical white matter ischemic injury coupled with retrograde neuronal tracing, we employed magnetic affinity cell sorting with fluorescence-activated cell sorting to capture layer-specific cortical neurons and performed RNA-sequencing.

View Article and Find Full Text PDF

Oligonucleotide drugs are experiencing greater success in the clinic, encouraging the initiation of new projects. Resources are insufficient to develop every potentially important project, and persuasive experimental data using cell lines close to disease target tissue is needed to prioritize candidates. Friedreich's ataxia (FRDA) is a devastating and currently incurable disease caused by insufficient expression of the enzyme frataxin (FXN).

View Article and Find Full Text PDF