Publications by authors named "Jennifer Phillips-Cremins"

The dynamic three-dimensional (3D) organization of the human genome (the "4D Nucleome") is closely linked to genome function. Here, we integrate a wide variety of genomic data generated by the 4D Nucleome Project to provide a detailed view of human 3D genome organization in widely used embryonic stem cells (H1-hESCs) and immortalized fibroblasts (HFFc6). We provide extensive benchmarking of 3D genome mapping assays and integrate these diverse datasets to annotate spatial genomic features across scales.

View Article and Find Full Text PDF

DNA is folded into higher-order structures that shape and are shaped by genome function. The role of long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNA Pol II) during neural lineage commitment.

View Article and Find Full Text PDF

Sequential Oligopaints DNA FISH is an imaging technique that measures higher-order genome folding at single-allele resolution via multiplexed, probe-based tracing. Currently there is a paucity of algorithms to identify 3D genome features in sequential Oligopaints data. Here, we present FISHnet, a graph theory method based on optimization of network modularity to detect chromatin domains and boundaries in pairwise distance matrices.

View Article and Find Full Text PDF

Unlabelled: More than 60 human disorders have been linked to unstable expansion of short tandem repeat (STR) tracts. STR length and the extent of DNA methylation is linked to disease pathology and can be mosaic in a cell type-specific manner in several repeat expansion disorders. Mosaic phenomenon have been difficult to study to date due to technical bias intrinsic to repeat sequences and the need for multi-modal measurements at single-allele resolution.

View Article and Find Full Text PDF

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells.

View Article and Find Full Text PDF

Mammalian genomes fold into tens of thousands of long-range loops, but their functional role and physiologic relevance remain poorly understood. Here, using human post-mitotic neurons with rare familial Alzheimer's disease (FAD) mutations, we identify hundreds of reproducibly dysregulated genes and thousands of miswired loops prior to amyloid accumulation and tau phosphorylation. Single loops do not predict expression changes; however, the severity and direction of change in mRNA levels and single-cell burst frequency strongly correlate with the number of FAD-gained or -lost promoter-enhancer loops.

View Article and Find Full Text PDF

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion.

View Article and Find Full Text PDF

DNA is folded into higher-order structures that shape and are shaped by genome function. The role for long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNAPolII) during neural lineage commitment.

View Article and Find Full Text PDF

Studies of the genetics of Alzheimer's disease (AD) have largely focused on single nucleotide variants and short insertions/deletions. However, most of the disease heritability has yet to be uncovered, suggesting that there is substantial genetic risk conferred by other forms of genetic variation. There are over one million short tandem repeats (STRs) in the genome, and their link to AD risk has not been assessed.

View Article and Find Full Text PDF

While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)-present in some but not all cells-remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.

View Article and Find Full Text PDF

CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy.

View Article and Find Full Text PDF

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples.

View Article and Find Full Text PDF

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets.

View Article and Find Full Text PDF

Nearly half of the human genome is comprised of diverse repetitive sequences ranging from satellite repeats to retrotransposable elements. Such sequences are susceptible to stepwise expansions, duplications, inversions, and recombination events which can compromise genome function. In this review, we discuss the higher-order folding mechanisms of compartmentalization and loop extrusion and how they shape, and are shaped by, heterochromatin.

View Article and Find Full Text PDF

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs), subTADs and loops in the positioning of replication initiation zones (IZs).

View Article and Find Full Text PDF
Article Synopsis
  • Cohesin and CTCF are important for 3D genome organization and play a significant role in gene expression during neuronal maturation and maintenance.
  • In a study of mouse primary cortical neurons, cohesin was found to be essential for the expression of certain secondary response genes that rely on long-range chromatin interactions, while immediate early genes could be induced without it.
  • The dependence on cohesin for gene expression varied with the length of chromatin loops, highlighting its critical role in regulating genes involved in synaptic transmission and neurotransmitter signaling as neurons mature.
View Article and Find Full Text PDF

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 10-10-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography.

View Article and Find Full Text PDF

Although the synaptic alterations associated with the stress-related mood disorder major depression has been well-documented, the underlying transcriptional mechanisms remain poorly understood. Here, we perform complementary bulk nuclei- and single-nucleus transcriptome profiling and map locus-specific chromatin interactions in mouse neocortex to identify the cell type-specific transcriptional changes associated with stress-induced behavioral maladaptation. We find that cortical excitatory neurons, layer 2/3 neurons in particular, are vulnerable to chronic stress and acquire signatures of gene transcription and chromatin structure associated with reduced neuronal activity and expression of Yin Yang 1 (YY1).

View Article and Find Full Text PDF

Payne et al. (2020) combine in situ imaging and ex situ sequencing via spatially resolved unique molecular barcodes to query higher-order genome folding patterns in intact single nuclei from mouse embryos and human fibroblasts.

View Article and Find Full Text PDF

Animal chromosomes are partitioned into contact domains. Pathogenic domain disruptions can result from chromosomal rearrangements or perturbation of architectural factors. However, such broad-scale alterations are insufficient to define the minimal requirements for domain formation.

View Article and Find Full Text PDF

An important unanswered question in chromatin biology is the extent to which long-range looping interactions change across developmental models, genetic perturbations, drug treatments, and disease states. Computational tools for rigorous assessment of cell type-specific loops across multiple biological conditions are needed. We present 3DeFDR, a simple and effective statistical tool for classifying dynamic loops across biological conditions from Chromosome-Conformation-Capture-Carbon-Copy (5C) and Hi-C data.

View Article and Find Full Text PDF

Neuronal activation induces rapid transcription of immediate early genes (IEGs) and longer-term chromatin remodeling around secondary response genes (SRGs). Here, we use high-resolution chromosome-conformation-capture carbon-copy sequencing (5C-seq) to elucidate the extent to which long-range chromatin loops are altered during short- and long-term changes in neural activity. We find that more than 10% of loops surrounding select IEGs, SRGs, and synaptic genes are induced de novo during cortical neuron activation.

View Article and Find Full Text PDF

Promoter-anchored chromatin interactions (PAIs) play a pivotal role in transcriptional regulation. Current high-throughput technologies for detecting PAIs, such as promoter capture Hi-C, are not scalable to large cohorts. Here, we present an analytical approach that uses summary-level data from cohort-based DNA methylation (DNAm) quantitative trait locus (mQTL) studies to predict PAIs.

View Article and Find Full Text PDF

Genomes across a wide range of eukaryotic organisms fold into higher-order chromatin domains. Topologically associating domains (TADs) were originally discovered empirically in low-resolution Hi-C heat maps representing ensemble average interaction frequencies from millions of cells. Here, we discuss recent advances in high-resolution Hi-C, single-cell imaging experiments, and functional genetic studies, which provide an increasingly complex view of the genome's hierarchical structure-function relationship.

View Article and Find Full Text PDF