We present results from a series of laboratory column studies investigating the impacts of infiltration dynamics and the addition of a soil-carbon amendment (wood mulch or almond shells) on water quality during infiltration for flood-managed aquifer recharge (flood-MAR). Recent studies suggest that nitrate removal could be enhanced during infiltration for MAR through the application of a wood chip permeable reactive barrier (PRB). However, less is understood about how other readily available carbon sources, such as almond shells, could be used as a PRB material, and how carbon amendments could impact other solutes, such as trace metals.
View Article and Find Full Text PDFIn this study, we conducted a meta-analysis of soil microbial communities at three, pilot-scale field sites simulating shallow infiltration for managed aquifer recharge (MAR). We evaluated shifts in microbial communities after infiltration across site location, through different soils, with and without carbon-rich amendments added to test plots. Our meta-analysis aims to enable more effective MAR basin design by identifying potentially important interactions between soil physical-geochemical parameters and microbial communities across several geographically separate MAR basins.
View Article and Find Full Text PDFWe present results from a series of plot-scale field experiments to quantify physical infiltration dynamics and the influence of adding a carbon-rich, permeable reactive barrier (PRB) for the cycling of nitrogen and associated trace metals during rapid infiltration for managed aquifer recharge (MAR). Recent studies suggest that adding a bio-available carbon source to soils can enhance denitrification rates and associated N load reduction during moderate-to-rapid infiltration (≤1 m/day). We examined the potential for N removal during faster infiltration (>1 m/day), through coarse and carbon-poor soils, and how adding a carbon-rich PRB (wood chips) affects subsurface redox conditions and trace metal mobilization.
View Article and Find Full Text PDF