Purpose: Implantable electronic cardiovascular device such as cardiac pacemakers and implantable defibrillators are common life-saving devices. Device-related complications can arise when undergoing surgical interventions with electrosurgical tools due to electromagnetic interference, based on electrocautery type, implantable electronic cardiovascular device type, electrocautery location, and a number of other factors. The risk of device-related complications due to electrocautery in oculoplastic surgery has not been established.
View Article and Find Full Text PDFDiverse pathways drive resistance to BRAF/MEK inhibitors in BRAF-mutant melanoma, suggesting that durable control of resistance will be a challenge. By combining statistical modeling of genomic data from matched pre-treatment and post-relapse patient tumors with functional interrogation of >20 in vitro and in vivo resistance models, we discovered that major pathways of resistance converge to activate the transcription factor, c-MYC (MYC). MYC expression and pathway gene signatures were suppressed following drug treatment, and then rebounded during progression.
View Article and Find Full Text PDFCombinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K.
View Article and Find Full Text PDFTherapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that combined inhibition of B cell lymphoma-extra large (BCL-X) and the mammalian target of rapamycin (mTOR)/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple-negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses myeloid cell leukemia-1 (MCL-1) protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-X This dual dependence on BCL-X and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of the molecular subtype or PIK3CA mutational status.
View Article and Find Full Text PDFABT-199, a potent and selective small-molecule antagonist of BCL-2, is being clinically vetted as pharmacotherapy for the treatment of acute myeloid leukemia (AML). However, given that prolonged monotherapy tends to beget resistance, we sought to investigate the means by which resistance to ABT-199 might arise in AML and the extent to which those mechanisms might be preempted. Here we used a pathway-activating genetic screen to nominate MCL-1 and BCL-XL as potential nodes of resistance.
View Article and Find Full Text PDF