ATP-gated P2X7 receptors are prominently expressed in inflammatory cells and play a key role in the immune response. A major consequence of receptor activation is the regulated influx of Ca(2+) through the self-contained cation non-selective channel. Although the physiological importance of the resulting rise in intracellular Ca(2+) is universally acknowledged, the biophysics of the Ca(2+) flux responsible for the effects are poorly understood, largely because traditional methods of measuring Ca(2+) permeability are difficult to apply to P2X7 receptors.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2015
The circulating erythrocyte, by virtue of the regulated release of ATP in response to reduced oxygen (O2) tension, plays a key role in maintaining appropriate perfusion distribution to meet tissue needs. Erythrocytes from individuals with Type 2 diabetes (DM2) fail to release ATP in response to this stimulus. However, the administration of C-peptide and insulin at a 1:1 ratio was shown to restore this important physiological response in humans with DM2.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2014
ATP release from erythrocytes in response to reduced oxygen (O2) tension stimulates local vasodilation, enabling these cells to direct perfusion to areas in skeletal muscle in need of O2. Erythrocytes of humans with type 2 diabetes do not release ATP in response to low O2. Both C-peptide and insulin individually inhibit low O2-induced ATP release from healthy human erythrocytes, yet when coadministered at physiological concentrations and ratios, no inhibition is seen.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2013
Erythrocytes participate in the matching of oxygen (O2) delivery with local need in skeletal muscle via the release of O2 and the vasodilator, ATP. It was reported that a concentration of insulin found in humans with insulin resistance inhibits low O2-induced ATP release. However, in vivo, insulin is coreleased with connecting peptide (C-peptide) at equimolar concentrations, but because of the shorter insulin half-life, the peptides circulate at ratios of C-peptide to insulin ranging from 1:1 to 6:1.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2012
Erythrocytes have been implicated as controllers of vascular caliber by virtue of their ability to release the vasodilator ATP in response to local physiological and pharmacological stimuli. The regulated release of ATP from erythrocytes requires activation of a signaling pathway involving G proteins (G(i) or G(s)), adenylyl cyclase, protein kinase A, and the cystic fibrosis transmembrane conductance regulator as well as a final conduit through which this highly charged anion exits the cell. Although pannexin 1 has been shown to be the final conduit for ATP release from human erythrocytes in response to reduced oxygen tension, it does not participate in transport of ATP following stimulation of the prostacyclin (IP) receptor in these cells, which suggests that an additional protein must be involved.
View Article and Find Full Text PDF