Introduction: Conventional culture conditions, such as in T-flasks, require that oxygen diffuse through the medium to reach the islets; in turn, islet surface area density is limited by oxygen availability. To culture a typical clinical islet preparation may require more than 20 T-175 flasks at the standard surface area density of 200 IE/cm. To circumvent this logistical constraint, we tested islets cultured on top of silicon gas-permeable (GP) membranes which place islets in close proximity to ambient oxygen.
View Article and Find Full Text PDFBackground: Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement.
View Article and Find Full Text PDFTransplantation of macroencapsulated tissue-engineered grafts (TEGs) is being investigated as a treatment for type 1 diabetes, but there is a critical need to measure TEG viability both in vitro and in vivo. Oxygen deficiency is the most critical issue preventing widespread implementation of TEG transplantation and delivery of supplemental oxygen (DSO) has been shown to enhance TEG survival and function in vivo. In this study, we demonstrate the first use of oxygen-17 magnetic resonance spectroscopy ( O-MRS) to measure the oxygen consumption rate (OCR) of TEGs and show that in addition to providing therapeutic benefits to TEGs, DSO with O can also enable measurements of TEG viability.
View Article and Find Full Text PDFIslet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions.
View Article and Find Full Text PDFObjective: To investigate the outcomes of resilience training (RT) in an outpatient clinical setting on symptom relief for current or recurrent depression, as well as perceived stress and state and trait anxiety.
Design: Observational effectiveness study.
Settings/location: Penny George Institute for Health and Healing, Allina Health, Minneapolis, MN.
Background: Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.
View Article and Find Full Text PDFPorcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remain a critical issue.
View Article and Find Full Text PDFBackground: Porcine islet transplantation is emerging as an attractive option for the treatment of patients with type 1 diabetes, with the possibility of providing islets of higher and more consistent quality and in larger volumes than available from human pancreata. The use of encapsulated neonatal porcine islets (ENPI) is appealing because it can address islet supply limitations while reducing the need for anti-rejection therapy. Pre-transplant characterization of ENPI viability and potency is an essential component of the production process.
View Article and Find Full Text PDFBackground: Paramagnetic microparticles (MPs) may be useful in pancreatic islet purification, in particular purification of porcine islets as a potential xenotransplantation product. We assessed whether MPs affect islet function or induce an adverse effect following implantation.
Methods: Porcine islets were co-cultured with 0, 500, and 1500 MPs per islet equivalent (IE) for 1 day and with 0 and 1500 MPs/IE for 7 days.