Publications by authors named "Jennifer Neff"

Introduction: Infection frequently complicates the treatment of combat-related wounds, impairs healing, and leads to worse outcomes. To better manage wound infections, antimicrobial therapies that are effective against biofilm and designed for direct wound application are needed. The primary objective of this work was to evaluate a chitosan matrix for delivery of two engineered antimicrobial peptides, (ASP)-1 and ASP-2, to treat biofilm-associated bacteria.

View Article and Find Full Text PDF

Wound infections are a common complication of combat-related injuries that significantly increase morbidity and mortality. Multi-drug resistant (MDR) organisms and their associated biofilms play a significant role in the pathogenicity and chronicity of wound infections. A critical barrier to progress in the treatment of traumatic wounds is the need for broad spectrum antimicrobials that are effective against biofilms and compatible with topical delivery.

View Article and Find Full Text PDF

Medical device related infections are a significant and growing source of morbidity and mortality. Biofilm formation is a common feature of medical device infections that is not effectively prevented or treated by systemic antibiotics. Antimicrobial medical device combination products provide a pathway for local delivery of antimicrobial therapeutics with the ability to achieve high local concentrations while minimizing systemic side effects.

View Article and Find Full Text PDF

The adsorption and elution of the antimicrobial peptide nisin at silanized silica surfaces coated to present pendant polyethylene oxide chains was detected in situ by zeta potential measurements. Silica microspheres were treated with trichlorovinylsilane to introduce hydrophobic vinyl groups, followed by self assembly of the polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock surfactant Pluronic F108, or an F108 derivative with nitrilotriacetic acid end groups. Triblock-coated microspheres were gamma-irradiated to covalently stabilize the PPO-surface association.

View Article and Find Full Text PDF

There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors.

View Article and Find Full Text PDF

Nisin, an antibacterial peptide proven to be an effective inhibitor of Gram-positive bacteria, was incorporated into novel block copolymer constructs and tested for retained antibacterial activity. Covalent coupling was achieved by chemical modification of the N-terminal isoleucine to introduce a thiol group. Thiolated-nisin derivatives were then linked to poly[ethylene oxide]-poly[propylene oxide]-poly[ethylene oxide] (PEO-PPO-PEO) triblocks that had been end-activated such that terminal hydroxyl groups of the PEO chains were replaced with pyridyl disulfide moieties.

View Article and Find Full Text PDF

The antimicrobial peptide nisin has been observed to preferentially locate at surfaces coated with the poly[ethylene oxide]-poly[propylene oxide]-poly[ethylene oxide] (PEO-PPO-PEO) surfactant Pluronic F108, to an extent similar to its adsorption at uncoated, hydrophobic surfaces. In order to evaluate nisin function following its adsorption to surfaces presenting pendant PEO chains, the antimicrobial activity of nisin-loaded, F108-coated polystyrene microspheres and F108-coated polyurethane catheter segments was evaluated against the Gram-positive indicator strain, Pediococcus pentosaceus. The retained biological activity of these nisin-loaded layers was evaluated after incubation in the presence and absence of blood proteins, for contact periods up to one week.

View Article and Find Full Text PDF
Article Synopsis
  • The antimicrobial peptide nisin was observed to adsorb in multilayer quantities on hydrophobic surfaces coated with the surfactant Pluronic F108, despite F108's known ability to inhibit protein adsorption.
  • The rates of nisin adsorption and elution were slower on F108-coated surfaces compared to uncoated ones, indicating a unique interaction with the polymer brush layer.
  • Sequential adsorption experiments revealed that the presence of nisin at the interface resulted in low levels of serum albumin adsorption, highlighting a specific interaction between nisin and albumin when both are present.
View Article and Find Full Text PDF

Background: Levo-acetyl-alpha-methadol (LAAM) exerts most of it mu-agonist activity through the action of its 2 N-demethylation metabolites, norLAAM and dinorLAAM. The N-demethylation of LAAM to norLAAM and norLAAM to dinorLAAM is primarily performed by cytochrome P450s (CYP) in the 3A family. No previous studies have been conducted to determine the effect of in vivo inhibition of CYP3A on the pharmacokinetics and pharmacodynamics of LAAM.

View Article and Find Full Text PDF