A new physical model based on mesoscale self-assembly is developed to simulate indentation fracture in crystalline materials. Millimeter-scale hexagonal objects exhibiting atom-like potential functions were designed and allowed to self-assemble into two-dimensional (2D) aggregates at the interface between water and perfluorodecalin. Indentation experiments were performed on these aggregates, and the stresses and strains involved in these processes were evaluated.
View Article and Find Full Text PDF