Publications by authors named "Jennifer Moffat"

Article Synopsis
  • * The conference addressed a broad range of topics in antiviral science, including new antiviral drugs, vaccines, clinical trials, and strategies to tackle emerging viral threats.
  • * Keynote talks highlighted important issues like virus emergence in human-animal interactions and challenges in developing effective antivirals, with a summary provided for ICAR 2024 and a preview for the upcoming ICAR 2025 in Las Vegas.
View Article and Find Full Text PDF
Article Synopsis
  • FDA-approved antivirals for HCMV have limitations like targeting only late viral stages, causing side effects, and leading to drug resistance.
  • The study found that HCMV infection activates heat shock transcription factor 1 (HSF1), which is crucial for the early stages of viral replication.
  • Using an HSF1 inhibitor (SISU-102) significantly reduced HCMV replication in both infected cells and a human skin transplant model, suggesting a potential new antiviral strategy.
View Article and Find Full Text PDF
Article Synopsis
  • New acyclic pyrimidine nucleoside phosphonate prodrugs, featuring a specific phosphonic acid structure, were synthesized using a method called olefin cross-metathesis.
  • These prodrugs demonstrated strong antiviral activity in the nanomolar range against several viruses, including varicella zoster virus (VZV) and human cytomegalovirus (HCMV), with good selectivity to limit toxicity to cells.
  • The most promising compound, 9c (LAVR-289), showed exceptional potency against VZV and other herpesviruses, suggesting that it could be a valuable candidate for further clinical research as a broad-spectrum antiviral treatment.
View Article and Find Full Text PDF
Article Synopsis
  • The 36th International Conference on Antiviral Research (ICAR) took place from March 13-17, 2023, in Lyon, France, both in-person and through a remote platform, marking a return to European in-person meetings after COVID-19 restrictions.
  • The conference showcased a high turnout with many registrants, emphasizing the growing commitment of the antiviral research community to combating viral diseases and preparing for future pandemics.
  • Highlights included presentations, ISAR speaker awards, special events, and a plan for the next conference to be held in Gold Coast, Australia, from May 20-24, 2024.
View Article and Find Full Text PDF

Varicella zoster virus (VZV) establishes lifelong infection after primary disease and can reactivate. Several drugs are approved to treat VZV diseases, but new antivirals with greater potency are needed. Previously, we identified β-l-5-((-2-bromovinyl)-1-((2,4)-2-(hydroxymethyl)-1,3-(dioxolane-4-yl))uracil (l-BHDU, ), which had significant anti-VZV activity.

View Article and Find Full Text PDF

The 35th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held in Seattle, Washington, USA, on March 21-25, 2022 and concurrently through an interactive remote meeting platform. This report gives an overview of the conference on behalf of the society. It provides a general review of the meeting and awardees, summarizing the presentations and their main conclusions from the perspective of researchers active in many different areas of antiviral research and development.

View Article and Find Full Text PDF

Arboviruses such as flaviviruses and alphaviruses cause a significant human healthcare burden on a global scale. Transmission of these viruses occurs during human blood feeding at the mosquito-skin interface. Not only do pathogen immune evasion strategies influence the initial infection and replication of pathogens delivered, but arthropod salivary factors also influence transmission foci.

View Article and Find Full Text PDF

There is a continued need to understand varicella-zoster virus (VZV) pathogenesis and to develop more effective antivirals, as it causes chickenpox and zoster. As a human-restricted alphaherpesvirus, the use of human skin in culture and mice is critical in order to reveal the important VZV genes that are required for pathogenesis but that are not necessarily observed in the cell culture. We previously used VZV-expressing firefly luciferase (fLuc), under the control of the constitutively active SV40 promoter (VZV-BAC-Luc), to measure the VZV spread in the same sample.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) is a human-restricted virus, which raises obstacles to research. The strict human tropism limits knowledge about its pathogenesis and creates challenges for evaluating antiviral treatments and vaccines. The development of humanized mouse models was driven by the need to address these challenges.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) infects skin and mucosal epithelial cells and then travels along axons to establish latency in the neurones of sensory ganglia. Although viral gene expression is restricted during latency, the latency-associated transcript (LAT) locus encodes many RNAs, including a 2 kb intron known as the hallmark of HSV-1 latency. Here, we studied HSV-1 infection and the role of the LAT locus in human skin xenografts in vivo and in cultured explants.

View Article and Find Full Text PDF

Although there are effective nucleoside analogs to treat HSV, VZV, and HCMV disease, herpesvirus infections continue to contribute to significant morbidity and mortality. Acyclovir is the drug of choice for HSV encephalopathy, yet there is an estimated 6-19% mortality rate with half of the survivors experiencing moderate to severe chronic neurological deficits. For VZV, current treatments are inadequate to prevent acute and persistent pain due to zoster.

View Article and Find Full Text PDF

The herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals.

View Article and Find Full Text PDF

The 31 International Conference on Antiviral Research (ICAR) was held in Porto, Portugal from June 11-15, 2018. In this report, volunteer rapporteurs provide their summaries of scientific presentations, hoping to effectively convey the speakers' goals and the results and conclusions of their talks. This report provides an overview of the invited keynote and award lectures and highlights of short oral presentations, from the perspective of experts in antiviral research.

View Article and Find Full Text PDF

Background: The infectious cycle of varicella-zoster virus (VZV) after reactivation from the dorsal root ganglia includes replication and assembly of complete enveloped virions in the human skin to cause the characteristic herpes zoster (shingles).

Methods: To pursue studies of innate immunity to VZV infection, we have adapted a fetal skin organ culture model to a human neonatal foreskin explant model.

Results: Abundant expression of VZV IE62, gE, and gC was visualized by confocal microscopy while numerous enveloped virions were observed by electron microscopy in infected skin organ cultures.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that infects immunocompromised and cystic fibrosis patients. Treatment is difficult due to antibiotic resistance, and new antimicrobials are needed to treat infections. The alternative sigma factor 54 (σ, RpoN), regulates many virulence-associated genes.

View Article and Find Full Text PDF

Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1.

View Article and Find Full Text PDF

Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal.

View Article and Find Full Text PDF

The alphaherpesvirus varicella-zoster virus (VZV) causes chickenpox and shingles. Current treatments are acyclovir (ACV) and its derivatives, foscarnet and brivudine (BVdU). Additional antiviral compounds with increased potency and specificity are needed to treat VZV, especially to treat post-herpetic neuralgia.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) grows efficiently in quiescent cells in vivo and in culture, and virus infection activates cell cycle and signaling pathways without cell division. VZV ORFs have been identified that determine the tissue tropism for nondividing skin, T cells, and neurons in SCID-Hu mouse models. The normal cell cycle status of human foreskin fibroblasts was characterized and was dysregulated upon infection by VZV.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) is a medically important human alphaherpesvirus that causes varicella and zoster. VZV initiates primary infection by inoculation of the respiratory mucosa. In the course of primary infection, VZV establishes a life-long persistence in sensory ganglia; VZV reactivation from latency may result in zoster in healthy and immunocompromised patients.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) replicates in quiescent T cells, neurons, and skin cells. In cultured fibroblasts (HFFs), VZV induces host cyclin expression and cyclin-dependent kinase (CDK) activity without causing cell cycle progression. CDK1/cyclin B1 phosphorylates the major viral transactivator, and the CDK inhibitor roscovitine prevents VZV mRNA transcription.

View Article and Find Full Text PDF

The two VZV glycoproteins, gE and gI, are encoded by genes that are designated open reading frames, ORF67 and ORF68, located in the short unique region of the VZV genome. These proteins have homologs in the other alphaherpesviruses. Like their homologues, VZV gE and gI exhibit prominent co-localization in infected cells and form heterodimers.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV), an alphaherpesvirus restricted to humans, infects differentiated cells in vivo, including T lymphocytes, keratinocytes, and neurons, and spreads rapidly in confluent cultured dermal fibroblasts (HFFs). In VZV-infected HFFs, atypical expression of cyclins D3 and B1 occurs along with the induction of cyclin-dependent kinase (CDK) activity. A specific CDK1 inhibitor blocked VZV spread, indicating an important function for this cellular kinase in VZV replication.

View Article and Find Full Text PDF