Publications by authors named "Jennifer Mikkila"

Human induced pluripotent stem cells and their differentiation into cardiac myocytes (hiPSC-CMs) provides a unique and valuable platform for studies of cardiac muscle structure-function. This includes studies centered on disease etiology, drug development, and for potential clinical applications in heart regeneration/repair. Ultimately, for these applications to achieve success, a thorough assessment and physiological advancement of the structure and function of hiPSC-CMs is required.

View Article and Find Full Text PDF

Advancing maturation of stem cell-derived cardiac muscle represents a major barrier to progress in cardiac regenerative medicine. Cardiac muscle maturation involves a myriad of gene, protein, and cell-based transitions, spanning across all aspects of cardiac muscle form and function. We focused here on a key developmentally controlled transition in the cardiac sarcomere, the functional unit of the heart.

View Article and Find Full Text PDF

Recent advances have made it possible to readily derive cardiac myocytes from human induced pluripotent stem cells (hiPSC-CMs). HiPSC-CMs represent a valuable new experimental model for studying human cardiac muscle physiology and disease. Many laboratories have devoted substantial effort to examining the functional properties of isolated hiPSC-CMs, but to date, force production has not been adequately characterized.

View Article and Find Full Text PDF