Publications by authors named "Jennifer Marshall-Neff"

Objective: Because increased fibroblast growth factor-1 (FGF-1) and FGF receptor (FGFR) expression correlate with the development of accelerated graft arteriosclerosis in transplanted human hearts, this study sought to determine whether local gene transfer of soluble FGFR-1, capable of binding both FGF-1 and FGF-2, could blunt the development of accelerated graft arteriosclerosis in the rat aortic transplant model.

Methods And Results: A construct encoding the FGFR-1 ectodomain, capable of neutralizing FGF-2 action, was expressed in rat aortic allografts, using adenoviral gene transfer at the time of transplantation. Neointima formation was inhibited in aortic allografts transduced with soluble FGFR-1, compared with allografts transduced with Null virus.

View Article and Find Full Text PDF

Adenovirus serotype 5 (Ad5)-based vectors can bind at least three separate cell surface receptors for efficient cell entry: the coxsackie-adenovirus receptor (CAR), alpha nu integrins, and heparan sulfate glycosaminoglycans (HSG). To address the role of each receptor involved in adenoviral cell entry, we mutated critical amino acids in fiber or penton to inhibit receptor interaction. A series of five adenoviral vectors was prepared and the biodistribution of each was previously characterized in mice.

View Article and Find Full Text PDF

Adenoviral vectors used in gene therapy are predominantly derived from adenovirus serotype 5 (Ad5), which infects a broad range of cells. Ad5 cell entry involves interactions with the coxsackie-adenovirus receptor (CAR) and integrins. To assess these receptors in vivo, we mutated amino acid residues in fiber and penton that are involved in receptor interaction and showed that CAR and integrins play a minor role in hepatic transduction but that integrins can influence gene delivery to other tissues.

View Article and Find Full Text PDF

Background: The killing of vascular cells by activated macrophages is an important step in the process of destabilization of the arterial wall. The death receptor Fas is implicated in vascular cell death. Hence, we extended our studies in a rat aortic allograft model, using adenovirus-mediated overexpression of soluble Fas (sFas) to block Fas binding to Fas ligand (Fas-L).

View Article and Find Full Text PDF