Publications by authors named "Jennifer Madenspacher"

Immunity-related GTPase family M (IRGM), located on human chromosome 5q33.1, encodes a protein that promotes autophagy and suppresses the innate immune response. The minor allele of rs13361189 (-4299T>C), a single nucleotide polymorphism in the IRGM promoter, has been associated with several diseases, including Crohn's disease and tuberculosis.

View Article and Find Full Text PDF

Asthma is a chronic disease of the airways that impairs normal breathing. The etiology of asthma is complex and involves multiple factors, including the environment and genetics, especially the distinct genetic architecture associated with ancestry. Compared to early-onset asthma, little is known about genetic predisposition to late-onset asthma.

View Article and Find Full Text PDF

Cholesterol-25-hydroxylase (CH25H), the biosynthetic enzyme for 25-hydroxycholesterol (25HC), is most highly expressed in the lung, but its role in lung biology is poorly defined. Recently, we reported that Ch25h is induced in monocyte-derived macrophages recruited to the airspace during resolution of lung inflammation and that 25HC promotes liver X receptor-dependent (LXR-dependent) clearance of apoptotic neutrophils by these cells. Ch25h and 25HC are, however, also robustly induced by lung-resident cells during the early hours of lung inflammation, suggesting additional cellular sources and targets.

View Article and Find Full Text PDF

Macrophages play a central role in the pathogenesis of atherosclerosis. Our previous study demonstrated that solute carrier family 37 member 2 (SLC37A2), an endoplasmic reticulum-anchored phosphate-linked glucose-6-phosphate transporter, negatively regulates macrophage Toll-like receptor activation by fine-tuning glycolytic reprogramming . Whether macrophage SLC37A2 impacts macrophage inflammation and atherosclerosis under hyperlipidemic conditions is unknown.

View Article and Find Full Text PDF

Asthma is a common respiratory disease currently affecting more than 300 million worldwide and is characterized by airway inflammation, hyperreactivity, and remodeling. It is a heterogeneous disease consisting of corticosteroid-sensitive T-helper cell type 2-driven eosinophilic and corticosteroid-resistant, T-helper cell type 17-driven neutrophilic phenotypes. One pathway recently described to regulate asthma pathogenesis is cholesterol trafficking.

View Article and Find Full Text PDF

Mitochondrial abnormalities have been noted in lupus, but the causes and consequences remain obscure. Autophagy-related genes ATG5, ATG7 and IRGM have been previously implicated in autoimmune disease. We reasoned that failure to clear defective mitochondria via mitophagy might be a foundational driver in autoimmunity by licensing mitochondrial DNA-dependent induction of type I interferon.

View Article and Find Full Text PDF

Alveolar macrophages (AM) play a central role in initiation and resolution of lung inflammation, but the integration of these opposing core functions is poorly understood. AM expression of cholesterol 25-hydroxylase (CH25H), the primary biosynthetic enzyme for 25-hydroxycholesterol (25HC), far exceeds the expression of macrophages in other tissues, but no role for CH25H has been defined in lung biology. As 25HC is an agonist for the antiinflammatory nuclear receptor, liver X receptor (LXR), we speculated that CH25H might regulate inflammatory homeostasis in the lung.

View Article and Find Full Text PDF

Background And Aims: Dietary long-chain (≥20 carbons) n-3 polyunsaturated fatty acids (PUFAs) reduce atherosclerosis and enhance macrophage autophagy activation. How macrophage autophagy impacts atherosclerotic progression, particularly when comparing dietary n-3 PUFA supplementation vs. saturated fat feeding, is unknown.

View Article and Find Full Text PDF

Ozone (O3) is a criteria air pollutant that exacerbates and increases the incidence of chronic pulmonary diseases. O3 exposure is known to induce pulmonary inflammation, but little is known regarding how exposure alters processes important to the resolution of inflammation. Efferocytosis is a resolution process, whereby macrophages phagocytize apoptotic cells.

View Article and Find Full Text PDF

Whether respiratory epithelial cells regulate the final transit of extravasated neutrophils into the inflamed airspace or are a passive barrier is poorly understood. Alveolar epithelial type 1 (AT1) cells, best known for solute transport and gas exchange, have few established immune roles. Epithelial membrane protein 2 (EMP2), a tetraspan protein that promotes recruitment of integrins to lipid rafts, is highly expressed in AT1 cells but has no known function in lung biology.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are pathogen-recognition receptors that trigger the innate immune response. Recent reports have identified accessory proteins that provide essential support to TLR function through ligand delivery and receptor trafficking. Herein, we introduce leucine-rich repeats (LRRs) and calponin homology containing 4 (Lrch4) as a novel TLR accessory protein.

View Article and Find Full Text PDF

Lower plasma levels of the oxysterol cholestenoic acid associate with increased mortality and organ failure in septic patients with acute respiratory distress syndrome (ARDS). Cholestenoic acid warrants further validation as a novel ARDS biomarker.

View Article and Find Full Text PDF

Exposure to (bi)sulfite (HSO) and sulfite (SO) has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bi)sulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO), peroxymonosulfate (OSOO.

View Article and Find Full Text PDF

Background: Arsenic exposure via drinking water impacts millions of people worldwide. Although arsenic has been associated epidemiologically with increased lung infections, the identity of the lung cell types targeted by peroral arsenic and the associated immune mechanisms remain poorly defined.

Objectives: We aimed to determine the impact of peroral arsenic on pulmonary antibacterial host defense.

View Article and Find Full Text PDF

The pathogenesis of primary Sjogren's syndrome (SS), an autoimmune disease that targets the mucosa of exocrine tissues, is poorly understood. Although several mouse models have been developed that display features of SS, most of these are within the larger context of a lupus-like presentation. Immunity-related GTPase family M protein 1 (Irgm1) is an interferon-inducible cytoplasmic GTPase that is reported to regulate autophagy and mitochondrial homeostasis.

View Article and Find Full Text PDF

Although community-acquired pneumonia remains a major public health problem, murine models of bacterial pneumonia have recently facilitated significant preclinical advances in our understanding of the underlying cellular and molecular pathogenesis. In vivo mouse models capture the integrated physiology and resilience of the host defense response in a manner not revealed by alternative, simplified ex vivo approaches. Several methods have been described in the literature for intrapulmonary inoculation of bacteria in mice, including aerosolization, intranasal delivery, peroral endotracheal cannulation under 'blind' and visualized conditions, and transcutaneous endotracheal cannulation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by promoting degradation and/or repressing translation of specific target mRNAs. Several miRNAs have been identified that regulate the amplitude of the innate immune response by directly targeting Toll-like receptor (TLR) pathway members and/or cytokines. miR-33a and miR-33b (the latter present in primates but absent in rodents and lower species) are located in introns of the sterol regulatory element-binding protein (SREBP)-encoding genes and control cholesterol/lipid homeostasis in concert with their host gene products.

View Article and Find Full Text PDF

Lipid-laden macrophages, or "foam cells," are observed in the lungs of patients with fibrotic lung disease, but their contribution to disease pathogenesis remains unexplored. Here, we demonstrate that fibrosis induced by bleomycin, silica dust, or thoracic radiation promotes early and sustained accumulation of foam cells in the lung. In the bleomycin model, we show that foam cells arise from neighboring alveolar epithelial type II cells, which respond to injury by dumping lipids into the distal airspaces of the lungs.

View Article and Find Full Text PDF

Background: Apolipoprotein E (apoE) has been shown to play a pivotal role in the development of cardiovascular disease, attributable to its function in lipid trafficking and immune modulating properties; however, its role in modulating inflammation in the setting of acute lung injury (ALI) is unknown.

Objective: To determine whether apoE-deficient mice (apoE-/-) are more susceptible to ALI compared to wild-type (WT) animals.

Methods: Two independent models of ALI were employed.

View Article and Find Full Text PDF

Background: The genetic determinants of the human innate immune response are poorly understood. Apolipoprotein (Apo) E, a lipid-trafficking protein that affects inflammation, has well-described wild-type (ε3) and disease-associated (ε2 and ε4) alleles, but its connection to human innate immunity is undefined.

Objective: We sought to define the relationship of APOε4 to the human innate immune response.

View Article and Find Full Text PDF

Cancer and infection are predominant causes of human mortality and derive, respectively, from inadequate genomic and host defenses against environmental agents. The transcription factor p53 plays a central role in human tumor suppression. Despite its expression in immune cells and broad responsiveness to stressors, it is virtually unknown whether p53 regulates host defense against infection.

View Article and Find Full Text PDF

The plasma lipoprotein-associated apolipoproteins (apo) A-I and apoE have well described anti-inflammatory actions in the cardiovascular system, and mimetic peptides that retain these properties have been designed as therapeutics. The anti-inflammatory mechanisms of apolipoprotein mimetics, however, are incompletely defined. Whether circulating apolipoproteins and their mimetics regulate innate immune responses at mucosal surfaces, sites where transvascular emigration of leukocytes is required during inflammation, remains unclear.

View Article and Find Full Text PDF