Publications by authors named "Jennifer M Steers"

Purpose: To provide a systematic review of the applications of 3D printing in gynecological brachytherapy.

Methods: Peer-reviewed articles relating to additive manufacturing (3D printing) from the 34 million plus biomedical citations in National Center for Biotechnology Information (NCBI/PubMed), and 53 million records in Web of Science (Clarivate) were queried for 3D printing applications. The results were narrowed sequentially to, (1) all literature in 3D printing with final publications prior to July 2022 (in English, and excluding books, proceedings, and reviews), and then to applications in, (2) radiotherapy, (3) brachytherapy, (4) gynecological brachytherapy.

View Article and Find Full Text PDF

Purpose: Accelerated partial breast irradiation (APBI) delivered with high-dose-rate brachytherapy is a standard of care treatment typically delivered over 10 fractions. The TRIUMPH-T multi-institutional study recently demonstrated promising results using a shorter three fraction regimen, however there are limited additional published series using this regimen. Here, we report our experience and outcomes for patients treated as per the TRIUMPH-T regimen.

View Article and Find Full Text PDF

Background: While many have speculated on the reasons for gamma comparison insensitivity for patient-specific quality assurance analysis, the true reasons for insensitivity have not yet been elucidated. Failing to understand the reasons for this technique's insensitivity limits our ability to either improve the gamma metric to increase sensitivity of the comparison or the capacity to develop new comparison techniques that circumvent the limitations of the gamma comparison.

Purpose: To understand the underlying cause(s) for gamma comparison insensitivity and determine if simple plan characteristics can quantitatively predict for gamma comparison sensitivity.

View Article and Find Full Text PDF

Purpose: To separately quantify sensitivity differences in patient-specific quality assurance comparisons analyzed with the gamma comparison for different measurement geometries, spatial samplings, and delivery techniques [intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)].

Methods: Error-free calculations for 20 IMRT and 20 VMAT cases were compared to calculations with known induced errors of varying magnitudes, using gamma comparisons. Five error types (MU scaling, three different MLC errors, and collimator errors) were induced in plan calculations on three different detector geometries - ArcCHECK, MapCHECK, and Delta 4.

View Article and Find Full Text PDF

Purpose: To investigate the utility of gradient dose segmented analysis (GDSA) in combination with in vivo electronic portal imaging device (EPID) images to predict changes in the PTV mean dose for patient cases. Also, we use the GDSA to retrospectively analyze patients treated in our clinic to assess deviations for different treatment sites and use time-series data to observe any day-to-day changes.

Methods: In vivo EPID transit images acquired on the Varian Halcyon were analyzed for simulated errors in a phantom, including gas bubbles, weight loss, patient shifts, and an arm erroneously in the field.

View Article and Find Full Text PDF

Purpose: To provide insight into the types of questions asked to medical physicists by patients during one-on-one physicist-patient consults at one institution.

Materials And Methods: Medical physicists trained in patient communication techniques met with patients to provide an overview of the treatment planning and delivery processes, discuss the patient's treatment plan, and answer any technical questions. From August 2016 to December 2019, 152 physicist-patient consults were conducted.

View Article and Find Full Text PDF

Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA.

View Article and Find Full Text PDF

Purpose: To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT.

Methods: A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation.

View Article and Find Full Text PDF

Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning.

View Article and Find Full Text PDF