Human plasma cholesteryl ester transfer protein (CETP) transports cholesteryl ester from the antiatherogenic high-density lipoproteins (HDL) to the proatherogenic low-density and very low-density lipoproteins (LDL and VLDL). Inhibition of CETP has been shown to raise human plasma HDL cholesterol (HDL-C) levels and is potentially a novel approach for the prevention of cardiovascular diseases. Here, we report the crystal structures of CETP in complex with torcetrapib, a CETP inhibitor that has been tested in phase 3 clinical trials, and compound 2, an analog from a structurally distinct inhibitor series.
View Article and Find Full Text PDFSeveral SNPs located in or around the IL28B gene are associated with response of patients infected with Hepatitis C virus to treatment with pegylated interferon-α ⁺/⁻ ribavirin or with spontaneous clearance of the virus. The results of such studies are so compelling that future treatment approaches are likely to involve clinical decisions being made on the basis of a patient's genotype. Since IL28B is a paralogue of IL28A with greater than 95% sequence identity, it is possible that without genotyping assay specificity, sequences in IL28A may contribute to genotype identification, and potentially confound treatment decisions.
View Article and Find Full Text PDFIncreased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007), eleven years in the Exuma Cays, Bahamas (1995-2006), and four years in Puerto Morelos, Mexico (2003-2007).
View Article and Find Full Text PDFPhotoinhibition, exacerbated by elevated temperatures, underlies coral bleaching, but sensitivity to photosynthetic loss differs among various phylotypes of Symbiodinium, their dinoflagellate symbionts. Symbiodinium is a common symbiont in many cnidarian species including corals, jellyfish, anemones, and giant clams. Here, we provide evidence that most members of clade A Symbiodinium, but not clades B-D or F, exhibit enhanced capabilities for alternative photosynthetic electron-transport pathways including cyclic electron transport (CET).
View Article and Find Full Text PDFGenetic variation in CETP (cholesteryl ester transfer protein) has been clearly associated with HDL cholesterol levels but its association with cardiovascular disease and related phenotypes has been more controversial, possibly due to variability of polymorphisms and their frequencies across different ethnic populations. To see if there are undetected polymorphisms affecting protein sequence in individuals of Asian ancestry and to determine the functionality of such variants, all exons and adjacent intronic segments were resequenced in 96 individuals and the observed variants cloned and analyzed. Two novel SNPs, including one coding change, S332 to Y332, were identified.
View Article and Find Full Text PDFThe PfPMT enzyme of Plasmodium falciparum, the agent of severe human malaria, is a member of a large family of known and predicted phosphoethanolamine methyltransferases (PMTs) recently identified in plants, worms, and protozoa. Functional studies in P. falciparum revealed that PfPMT plays a critical role in the synthesis of phosphatidylcholine via a plant-like pathway involving serine decarboxylation and phosphoethanolamine methylation.
View Article and Find Full Text PDFBackground: The high rate of mortality due to malaria and the worldwide distribution of parasite resistance to the commonly used antimalarial drugs chloroquine and pyrimethamine emphasize the urgent need for the development of new antimalarial drugs. An alternative approach to the long and uncertain process of designing and developing new compounds is to identify among the armamentarium of drugs already approved for clinical treatment of various human diseases those that may have strong antimalarial activity.
Methods: Proteasome inhibitor bortezomib (Velcade: [(1R)-3-methyl-1-[[(2S)-1-oxo-3-phenyl-2-[(pyrazinylcarbonyl) amino]propyl]amino]butyl] boronic acid), which has been approved for treatment of patients with multiple myeloma, and a second boronate analog Z-Leu-Leu-Leu-B(OH)2 (ZL3B), were tested against four different strains of P.
Background: Reduction of drug-induced adverse events may be achievable through a better understanding of the underlying causes of such events. Identifying phenotypes and genotypes that allow event prediction would provide greater safety margins for new therapeutics. Torsades de pointes (TdP) is one such life-threatening adverse event and can arise from excessive lengthening of the QT interval.
View Article and Find Full Text PDFPhosphatidylcholine is the most abundant phospholipid in the membranes of Plasmodium falciparum, the agent of severe human malaria. The synthesis of this phospholipid occurs via two routes, the CDP-choline pathway, which uses host choline as a precursor, and the plant-like serine decarboxylase-phosphoethanolamine methyltransferase (SDPM) pathway, which uses host serine as a precursor. Although various components of these pathways have been identified, their cellular locations remain unknown.
View Article and Find Full Text PDFVariation in CETP has been shown to play an important role in HDL-C levels and cardiovascular disease. To better characterize this variation, the promoter and exonic DNA for CETP was resequenced in 189 individuals with extreme HDL-C or age. Two novel amino acid variants were found in humans (V-12D and Y361C) and an additional variant (R137W) not previously studied in vitro were expressed.
View Article and Find Full Text PDFUnlike humans and yeast, Plasmodium falciparum, the agent of the most severe form of human malaria, utilizes host serine as a precursor for the synthesis of phosphatidylcholine via a plant-like pathway involving phosphoethanolamine methylation. The monopartite phosphoethanolamine methyltransferase, Pfpmt, plays an important role in the biosynthetic pathway of this major phospholipid by providing the precursor phosphocholine via a three-step S-adenosyl-L-methionine-dependent methylation of phosphoethanolamine. In vitro studies showed that Pfpmt has strong specificity for phosphoethanolamine.
View Article and Find Full Text PDF