The synthesis, structure-activity relationship, in vivo activity, and metabolic profile for a series of triazolopyridine-oxazole based p38 inhibitors are described. The deficiencies of the lead structure in the series, CP-808844, were overcome by changes to the C4 aryl group and the triazole side-chain culminating in the identification of several potential clinical candidates.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2006
The purpose of the present study was to determine whether catabolic stimuli that induce muscle atrophy alter the muscle mRNA abundance of insulin-like growth factor binding protein (IGFBP)-4 and -5, and if so determine the physiological mechanism for such a change. Catabolic insults produced by endotoxin (LPS) and sepsis decreased IGFBP-5 mRNA time- and dose-dependently in gastrocnemius muscle. This reduction did not result from muscle disuse because hindlimb immobilization increased IGFBP-5.
View Article and Find Full Text PDFA decrease in inhibitory tone of endogenous opioid peptide on the afternoon of proestrus is one event underlying generation of the ovulatory luteinizing hormone (LH) surge, since premature removal of this inhibitory tone (i.e., disinhibition) results in an early onset of the surge.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic inflammatory disorder leading to bone and cartilage destruction. A substantial body of evidence suggests that prostaglandin E2 (PGE2) contributes to the pathogenesis of RA, and nonsteroidal anti-inflammatory drugs, inhibitors of the synthesis of PGE2 and other prostanoids, continue to be used in the treatment of this disease. To begin to understand the mechanism by which prostaglandins modulate the pathophysiology of this disease, we examined mice lacking each of the four known PGE2 (EP) receptors after generation of collagen antibody-induced arthritis, an animal model of RA.
View Article and Find Full Text PDF