The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production.
View Article and Find Full Text PDFEarly during retroviral infection, a fraction of the linear reverse-transcribed viral DNA genomes become circularized by cellular enzymes, thereby inactivating the genomes for further replication. Prominent circular DNA forms include 2-long-terminal repeat (LTR) circles, made by DNA end joining, and 1-LTR circles, produced in part by homologous recombination. These reactions provide a convenient paradigm for analyzing the cellular machinery involved in DNA end joining in vertebrate cells.
View Article and Find Full Text PDFBackground: RNA interference (RNAi) is a newly discovered cellular defense system that is known to suppress replication of genomic parasites in model organisms. It has been widely conjectured that RNAi may also serve as an antiviral system in vertebrates.
Results: Retroviral infection could be initiated by electroporation of cloned Rous sarcoma virus (RSV) proviral DNA into the developing chick neural tube.