Publications by authors named "Jennifer M Enright"

Purpose: To report and evaluate a multicenter series of 18 cases of severe, spontaneous IOL tilt involving the flanged intrascleral haptic fixation technique (FISHF).

Design: Clinical study with historical controls.

Methods: We report a cross-sectional study of 46 FISHF cases using the CT Lucia 602 IOL at a single academic center over a period of 24 weeks to determine the incidence of severe rotisserie-style rotational tilt.

View Article and Find Full Text PDF

Fenofibrate slows the progression of clinical diabetic retinopathy (DR), but its mechanism of action in the retina remains unclear. Fenofibrate is a known agonist of peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor critical for regulating metabolism, inflammation and oxidative stress. Using a DR mouse model, , we tested the hypothesis that fenofibrate slows early DR progression by activating PPARα in the retina.

View Article and Find Full Text PDF

The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A into vitamin A, thereby shifting the ratio of vitamin A-based rhodopsin to red-shifted vitamin A-based porphyropsin in the eye. Here, we show that the sea lamprey (), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx.

View Article and Find Full Text PDF

Rod photoreceptors are specialized neurons that mediate vision in dim light and are the predominant photoreceptor type in nocturnal mammals. The rods of nocturnal mammals are unique among vertebrate cell types in having an 'inverted' nuclear architecture, with a dense mass of heterochromatin in the center of the nucleus rather than dispersed clumps at the periphery. To test if this unique nuclear architecture is correlated with a unique epigenomic landscape, we performed ATAC-seq on mouse rods and their most closely related cell type, cone photoreceptors.

View Article and Find Full Text PDF

Purpose Of Review: Intraoperative floppy iris syndrome (IFIS) occurs in 2% of cataract surgeries and is associated with an increased risk of surgical complications. These complications can be avoided when high-risk patients are identified by preoperative screening and appropriate measures are used intraoperatively. The purpose of this article is to review emerging risk factors for IFIS and to summarize management strategies used in IFIS.

View Article and Find Full Text PDF

In humans, a considerable fraction of the retinoid pool in skin is derived from vitamin A2 (all-trans 3,4-dehydroretinal). Vitamin A2 may be locally generated by keratinocytes, which can convert vitamin A1 (all-trans retinol) into vitamin A2 in cell culture. We report that human cytochrome P450 (hP450) 27C1, a previously 'orphan' enzyme, can catalyze this reaction.

View Article and Find Full Text PDF

Some vertebrate species have evolved means of extending their visual sensitivity beyond the range of human vision. One mechanism of enhancing sensitivity to long-wavelength light is to replace the 11-cis retinal chromophore in photopigments with 11-cis 3,4-didehydroretinal. Despite over a century of research on this topic, the enzymatic basis of this perceptual switch remains unknown.

View Article and Find Full Text PDF

Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are largely unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets, and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored.

View Article and Find Full Text PDF

The light-damaged zebrafish retina results in the death of photoreceptor cells and the subsequent regeneration of the missing rod and cone cells. Photoreceptor regeneration initiates with asymmetric Müller glial cell division to produce neuronal progenitor cells, which amplify, migrate to the outer nuclear layer (ONL), and differentiate into both classes of photoreceptor cells. In this study, we examined the role of the Pax6 protein in regeneration.

View Article and Find Full Text PDF

The adult zebrafish retina exhibits a robust regenerative response following light-induced photoreceptor cell death. This response is initiated by the Müller glia proliferating in the inner nuclear layer (INL), which gives rise to neuronal progenitor cells that continue to divide and migrate to the outer nuclear layer (ONL), where they differentiate into rod and cone photoreceptors. We previously conducted a microarray analysis of retinal gene expression at 16, 31, 51, 68, and 96 h of constant intense-light treatment to identify genes and their corresponding proteins that may be involved in the generation and proliferation of the neuronal progenitor cells.

View Article and Find Full Text PDF

The adult zebrafish retina possesses a robust regenerative response. In the light-damaged retina, Müller glial cell divisions precede regeneration of rod and cone photoreceptors. Neuronal progenitors, which arise from the Müller glia, continue to divide and use the Müller glial cell processes to migrate to the outer nuclear layer and replace the lost photoreceptors.

View Article and Find Full Text PDF