The malaria SYBR green assay, which is used to profilein vitrodrug susceptibility ofPlasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value.
View Article and Find Full Text PDFThrough our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was used to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4' of the well-known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead.
View Article and Find Full Text PDFThe enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery.
View Article and Find Full Text PDFTriclosan is a potent inhibitor of Toxoplasma gondii enoyl reductase (TgENR), which is an essential enzyme for parasite survival. In view of triclosan's poor druggability, which limits its therapeutic use, a new set of B-ring modified analogs were designed to optimize its physico-chemical properties. These derivatives were synthesized and evaluated by in vitro assay and TgENR enzyme assay.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2013
A novel cytotoxin 3,5-bis(4-chlorobenzylidene)-1-[4-{2-(4-morpholinyl)ethoxy}phenyl-carbonyl]-4-piperidone hydrochloride 2 demonstrated potent antimalarial properties with IC(50) values of 0.60 and 1.97 μM against the drug sensitive D6 strain and the C235 drug-resistant strain of Plasmodium falciparum.
View Article and Find Full Text PDFToxoplasma gondii (T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed.
View Article and Find Full Text PDFToxoplasma gondii is a protozoan parasite that can damage the human brain and eyes. There are no curative medicines. Herein, we describe our discovery of N-benzoyl-2-hydroxybenzamides as a class of compounds effective in the low nanomolar range against T.
View Article and Find Full Text PDFThe protozoan parasite responsible for malaria affects over 500 million people each year. Current antimalarials have experienced decreased efficacy due to the development of drug-resistant strains of Plasmodium spp., resulting in a critical need for the discovery of new antimalarials.
View Article and Find Full Text PDF