Scaffolding the calcium/calmodulin-dependent phosphatase 2B (PP2B, calcineurin) focuses and insulates termination of local second messenger responses. Conformational flexibility in regions of intrinsic disorder within A-kinase anchoring protein 79 (AKAP79) delineates PP2B access to phosphoproteins. Structural analysis by negative-stain electron microscopy (EM) reveals an ensemble of dormant AKAP79-PP2B configurations varying in particle length from 160 to 240 Å.
View Article and Find Full Text PDFFiltration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane.
View Article and Find Full Text PDFThe proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β).
View Article and Find Full Text PDFAnchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3.
View Article and Find Full Text PDFEndocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic β-cells involves ion channels and mobilization of Ca(2+) and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-β-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice.
View Article and Find Full Text PDFThe largest transcription factor IID (TFIID) subunit, TBP-associated factor 1 (TAF1), possesses protein kinase and histone acetyltransferase (HAT) activities. Both enzymatic activities are essential for transcription from a subset of genes and G(1) progression in mammalian cells. TAF7, another TFIID subunit, binds TAF1 and inhibits TAF1 HAT activity.
View Article and Find Full Text PDFCell movement requires the coordinated reception, integration, and processing of intracellular signals. We have discovered that the protein kinase A anchoring protein AKAP220 interacts with the cytoskeletal scaffolding protein IQGAP1 to influence cell motility. AKAP220/IQGAP1 networks receive and integrate calcium and cAMP second messenger signals and position signaling enzymes near their intended substrates at leading edges of migrating cells.
View Article and Find Full Text PDFRac GTPases promote formation of membrane ruffles, yet how key effectors of this small GTPase operate in response to intracellular signals is not well established. In our recent report, "Anchored PKA recruitment of active Rac," we identify a cortical actin cytoskeletal signaling complex containing an A-Kinase Anchoring Protein (AKAP) and the IQGAP2 isoform. We show that dynamic assembly of this complex requires the combined action of calcium and cAMP signals.
View Article and Find Full Text PDFProtein kinase A-anchoring proteins (AKAPs) influence fundamental cellular processes by directing the cAMP-dependent protein kinase (PKA) toward its intended substrates. In this report we describe the identification and characterization of a ternary complex of AKAP220, the PKA holoenzyme, and the IQ domain GTPase-activating protein 2 isoform (IQGAP2) that is enriched at cortical regions of the cell. Formation of an IQGAP2-AKAP220 core complex initiates a subsequent phase of protein recruitment that includes the small GTPase Rac.
View Article and Find Full Text PDFα(1D)-Adrenergic receptors (ARs) are key regulators of cardiovascular system function that increase blood pressure and promote vascular remodeling. Unfortunately, little information exists about the signaling pathways used by this important G protein-coupled receptor (GPCR). We recently discovered that α(1D)-ARs form a "signalosome" with multiple members of the dystrophin-associated protein complex (DAPC) to become functionally expressed at the plasma membrane and bind ligands.
View Article and Find Full Text PDF