The use of environmental DNA (eDNA) as a sampling tool offers insights into the detection of invasive and/or rare aquatic species and enables biodiversity assessment without traditional sampling approaches, which are often labor-intensive. However, our understanding of the environmental factors that impact eDNA removal (i.e.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) in aquatic systems is a complex mixture that includes dissolved DNA, intracellular DNA, and particle-adsorbed DNA. Information about the various components of eDNA and their relative proportions could be used to discern target organism abundance and location. However, a limited knowledge of eDNA adsorption dynamics and interactions with other materials hinders these applications.
View Article and Find Full Text PDFAntibiotic resistance (AR) determinants are enriched in animal manures, a significant portion of which is land-applied as a soil amendment or as fertilizer, leading to potential AR runoff and microbial pollution in adjacent surface waters. To effectively inform AR monitoring and mitigation efforts, a thorough understanding and description of the persistence and transport of manure-derived AR in flowing waters are needed. We used experimental recirculating mesocosms to assess water-column removal rates of antibiotic resistance genes (ARGs) originating from a cow manure slurry collected from a dairy farm.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets.
View Article and Find Full Text PDFProtein detection is a universal tool critical to many applications in medicine, agriculture, and biotechnology. We developed a novel protein detection method combining light transmission spectroscopy and particle-size analysis of gold nanospheres monovalently functionalized with polyclonal antibodies and applied it to an emerging challenge for such technologies─the monitoring of environmental proteins (eProteins) present in natural aquatic systems. These are an underreported source of pollution and include the pseudopersistent Cry toxins that enter aquatic ecosystems from surrounding genetically engineered crops.
View Article and Find Full Text PDFExcess phosphorus (P) from agriculture is a leading cause of harmful and nuisance algal blooms in many freshwater ecosystems. Throughout much of the midwestern United States, extensive networks of subsurface tile drains remove excess water from fields and allow for productive agriculture. This enhanced drainage also facilitates the transport of P, particularly soluble reactive phosphorus (SRP), to adjacent streams and ditches, with harmful consequences.
View Article and Find Full Text PDFIn freshwater ecosystems, phosphorus (P) is often considered a growth-limiting nutrient. The use of fertilizers on agricultural fields has led to runoff-driven increases in P availability in streams, and the subsequent eutrophication of downstream ecosystems. Isolated storms and periodic streambed dredging are examples of two common disturbances that contribute dissolved and particulate P to agricultural streams, which can be quantified as soluble reactive P (SRP) using the molybdate-blue method on filtered water samples, or total P (TP) measured using digestions on unfiltered water reflecting all forms of P.
View Article and Find Full Text PDFThe midwestern United States is a highly productive agricultural region, and extended crop-free periods in winter/spring can result in nitrogen (N) and phosphorus (P) losses to waterways that degrade downstream water quality. Planting winter cover crops can improve soil health while reducing nutrient leaching from farm fields during the fallow period. In this study, we used linear mixed effects models and multivariate statistics to determine the effect of cover crops on soil nutrients by comparing fields with cover crops (n = 9) versus those without (n = 6) in two Indiana agricultural watersheds: the Shatto Ditch Watershed, which had >60% of croppable acres in winter cover crops, and the Kirkpatrick Ditch Watershed, which had ∼20%.
View Article and Find Full Text PDFEnvironmental proteins (eProteins), such as Cry proteins associated with genetically engineered (GE) organisms, are present in ecosystems worldwide, but only rarely reach concentrations with detectable ecosystem-level impacts. Despite their ubiquity, the degradation and fate of Cry and other eProteins are mostly unknown. Here, we report the results of an experiment where we added Cry proteins leached from GE Bt maize to a suite of 19 recirculating experimental streams.
View Article and Find Full Text PDFFloodplain restoration constructed via the two-stage ditch in agricultural streams has the potential to enhance nutrient retention and prevent the eutrophication of downstream ecosystems. Identifying the role of biotic and abiotic factors influencing soluble reactive phosphorus (SRP) retention in floodplains is of interest given that changing redox conditions associated with floodplain inundation can result in a release of geochemically sorbed SRP to the water column. In three agricultural waterways (Indiana, USA), we conducted seasonal measurements of a suite of biogeochemical pools (total P, bioavailable P and Fe) and processes (SRP flux and microbial respiration) from multiple floodplain transects, along with their adjacent stream sediments, to determine the role of biotic and abiotic processes on floodplain SRP retention or release.
View Article and Find Full Text PDFSeasonal animal movement among disparate habitats is a fundamental mechanism by which energy, nutrients, and biomass are transported across ecotones. A dramatic example of such exchange is the annual emergence of mayfly swarms from freshwater benthic habitats, but their characterization at macroscales has remained impossible. We analyzed radar observations of mayfly emergence flights to quantify long-term changes in annual biomass transport along the Upper Mississippi River and Western Lake Erie Basin.
View Article and Find Full Text PDFThe majority of maize planted in the US is genetically-engineered to express insecticidal properties, including Cry1Ab protein, which is designed to resist the European maize borer (Ostrinia nubilalis). After crop harvest, these proteins can be leached into adjacent streams from crop detritus left on fields. The environmental fate of Cry1Ab proteins in aquatic habitats is not well known.
View Article and Find Full Text PDFRapid, sensitive, and quantitative protein detection is critical for many applications in medicine, environmental monitoring, and the food industry. Advancements in detection of proteins include the use of antigen-antibody binding; however, many current methods are time-consuming and have limiting factors such as low sensitivity and the inability to provide absolute values. We present a new high-throughput method for protein detection using light transmission spectroscopy (LTS), which can quantify and size nanoparticles in fluid suspension.
View Article and Find Full Text PDFAccumulation of plastic litter is accelerating worldwide. Rivers are a source of microplastic (i.e.
View Article and Find Full Text PDFThe increasing use of environmental DNA (eDNA) for determination of species presence in aquatic ecosystems is an invaluable technique for both ecology as a field and for the management of aquatic ecosystems. We examined the degradation dynamics of fish eDNA using an experimental array of recirculating streams, also using a "nested" primer assay to estimate degradation among eDNA fragment sizes. We introduced eDNA into streams with a range of water velocities (0.
View Article and Find Full Text PDFAdvances in detection of genetic material from species in aquatic ecosystems, including environmental DNA (eDNA), have improved species monitoring and management. eDNA from target species can readily move in streams and rivers and the goal is to measure it, and with that infer where and how abundant species are, adding great value to delimiting species invasions, monitoring and protecting rare species, and estimating biodiversity. To date, we lack an integrated framework that identifies environmental factors that control eDNA movement in realistic, complex, and heterogeneous flowing waters.
View Article and Find Full Text PDFRiverine environments, such as streams and rivers, have been reported as sources of the potent greenhouse gas nitrous oxide ([Formula: see text]) to the atmosphere mainly via microbially mediated denitrification. Our limited understanding of the relative roles of the near-surface streambed sediment (hyporheic zone), benthic, and water column zones in controlling [Formula: see text] production precludes predictions of [Formula: see text] emissions along riverine networks. Here, we analyze [Formula: see text] emissions from streams and rivers worldwide of different sizes, morphology, land cover, biomes, and climatic conditions.
View Article and Find Full Text PDFThe insecticidal Cry1Ab protein expressed by transgenic (Bt) maize can enter adjacent water bodies via multiple pathways, but its fate in stream ecosystems is not as well studied as in terrestrial systems. In this study, we used a combination of field sampling and laboratory experiments to examine the occurrence, leaching, and degradation of soluble Cry1Ab protein derived from Bt maize in agricultural streams. We surveyed 11 agricultural streams in northwestern Indiana, USA, on 6 dates that encompassed the growing season, crop harvest, and snowmelt/spring flooding, and detected Cry1Ab protein in the water column and in flowing subsurface tile drains at concentrations of 3-60ng/L.
View Article and Find Full Text PDFWhile environmental DNA (eDNA) is now being regularly used to detect rare and elusive species, detection in lotic environments comes with a caveat: The species being detected is likely some distance upstream from the point of sampling. Here, we conduct a series of seminatural stream experiments to test the sensitivity of new digital droplet PCR (ddPCR) to detect low concentrations of eDNA in a lotic system, measure the residence time of eDNA compared to a conservative tracer, and we model the transport of eDNA in this system. We found that while ddPCR improves our sensitivity of detection, the residence time and transport of eDNA does not follow the same dynamics as the conservative tracer and necessitates a more stochastic framework for modeling eDNA transport.
View Article and Find Full Text PDFDetecting environmental DNA (eDNA) in water samples is a powerful tool in determining the presence of rare aquatic species. However, many open questions remain as to how biological and physical conditions in flowing waters influence eDNA. Motivated by what one might find in a stream/river benthos we conducted experiments in continuous flow columns packed with porous substrates to explore eDNA transport and ask whether substrate type and the presence of colonized biofilms plays an important role for eDNA retention.
View Article and Find Full Text PDFStreams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2011
Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.
View Article and Find Full Text PDFIn the midwestern United States, maize detritus enters streams draining agricultural land. Genetically modified Bt maize is commonly planted along streams and can possibly affect benthic macroinvertebrates, specifically members of the order Trichoptera, which are closely related to target species of some Bt toxins and are important detritivores in streams. The significance of inputs of Bt maize to aquatic systems has only recently been recognized, and assessments of potential nontarget impacts on aquatic organisms are lacking.
View Article and Find Full Text PDF