We extend and analyze the Wang and Politi modified Hai-Murphy model of smooth muscle cell contractions to capture uterine muscle cell response to variations in intracellular calcium concentrations. This model is used to estimate values of unknown parameters in uterine smooth muscle cell cross-bridging. Uterine motility is responsible for carrying out important processes throughout all phases of the nonpregnant female reproductive cycle, including sperm transport, menstruation, and embryo implantation.
View Article and Find Full Text PDFRecent evidence implicating leukocytes in angiogenesis raises the question of whether leukocytes and other cells circulating with the blood in microvascular networks can home to capillary sprouts intraluminally. This study describes an investigation of leukocyte trafficking in sprouting capillaries fabricated using soft lithography. The leukocytes passing with whole blood through existing capillaries were able to enter microfabricated capillary sprouts of variable length and sprouting angle due to the mechanical interaction with red blood cells (RBCs) at the sprouting bifurcation, in spite of the complete absence of blood flow through the blind-ended sprouts or any chemoattractants.
View Article and Find Full Text PDFAnalyses of microvascular networks with traditional tracer filling techniques suggest that the blood and lymphatic systems are distinct without direct communications, yet involvement of common growth factors during angiogenesis and lymphangiogenesis suggest that interactions at the capillary level are possible. To investigate the structural basis for lymphatic/blood endothelial cell connections during normal physiological growth, the objective of this study was to characterize the spatial relations between lymphatic and blood capillaries in adult rat mesenteric tissue. Using immunohistochemical methods, adult male Wistar rat mesenteric tissues were labeled with antibodies against PECAM (an endothelial marker) and LYVE-1, Prox-1, or Podoplanin (lymphatic endothelial markers) or NG2 (a pericyte marker).
View Article and Find Full Text PDFBackground: Trypanosoma cruzi is a Kinetoplastid parasite of humans and is the cause of Chagas disease, a potentially lethal condition affecting the cardiovascular, gastrointestinal, and nervous systems of the human host. Constraint-based modeling has emerged in the last decade as a useful approach to integrating genomic and other high-throughput data sets with more traditional, experimental data acquired through decades of research and published in the literature.
Results: We present a validated, constraint-based model of the core metabolism of Trypanosoma cruzi strain CL Brener.
Based on previous observations that newly inserted LINEs and SINEs have particularly long 3' A-tails, which shorten rapidly during evolutionary time, we have analyzed the rat and mouse genomes for evidence of recently inserted SINEs and LINEs. We find that the youngest predicted subfamilies of rodent identifier (ID) elements, a rodent-specific SINE derived from tRNA(Ala), are preferentially associated with A-tails over 50 bases in the rat genome, as predicted. Furthermore, these studies detected a subfamily of ID elements that has made over 15,000 copies that is younger than any previously reported ID subfamily.
View Article and Find Full Text PDF