Publications by authors named "Jennifer L Reimche"

Neisseria gonorrhoeae is a global threat to public health due to the accumulation of antimicrobial resistance mechanisms. ST-1901 is an internationally important sequence type (ST) because of its high incidence and the usual occurrence of chromosomally determined resistance. In this study, we describe the evolution of the ST-1901 and its single locus variants in Rio de Janeiro from 2006 to 2022.

View Article and Find Full Text PDF

This study characterized high-quality whole-genome sequences of a sentinel, surveillance-based collection of 1710 (GC) isolates from 2019 collected in the USA as part of the Gonococcal Isolate Surveillance Project (GISP). It aims to provide a detailed report of strain diversity, phylogenetic relationships and resistance determinant profiles associated with reduced susceptibilities to antibiotics of concern. The 1710 isolates represented 164 multilocus sequence types and 21 predominant phylogenetic clades.

View Article and Find Full Text PDF

Background: Sexual networks are difficult to construct because of incomplete sexual partner data. The proximity of people within a network may be inferred from genetically similar infections. We explored genomic data combined with partner services investigation (PSI) data to extend our understanding of sexual networks affected by Neisseria gonorrhoeae (NG).

View Article and Find Full Text PDF

Background: The prevalence of Neisseria gonorrhoeae (GC) isolates with elevated minimum inhibitory concentrations to various antibiotics continues to rise in the United States and globally. Genomic analysis provides a powerful tool for surveillance of circulating strains, antimicrobial resistance determinants, and understanding of transmission through a population.

Methods: Neisseria gonorrhoeae isolates collected from the US Gonococcal Isolate Surveillance Project in 2018 (n = 1479) were sequenced and characterized.

View Article and Find Full Text PDF

is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in is the ultiple ransferrable esistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g.

View Article and Find Full Text PDF

Recent reports suggest that mosaic-like sequences within the (ultiple ransferable esistance) efflux pump locus of , likely originating from commensal sp. by transformation, can increase the ability of gonococci to resist structurally diverse antimicrobials. Thus, acquisition of numerous nucleotide changes within the gene encoding the transcriptional repressor (MtrR) of the efflux pump-encoding operon or overlapping promoter region for both along with those that cause amino acid changes in the MtrD transporter protein were recently reported to decrease gonococcal susceptibility to numerous antimicrobials, including azithromycin (Azi) (C.

View Article and Find Full Text PDF

The gonococcal NorM efflux pump exports substrates with a cationic moiety, including quaternary ammonium compounds such as berberine (BE) and ethidium bromide (EB) as well as antibiotics such as ciprofloxacin and solithromycin. The gene is part of a four-gene operon that is transcribed from a promoter containing a polynucleotide tract of 6 or 7 thymidines (T's) between the -10 and -35 hexamers; the majority of gonococcal strains analyzed in this study contained a T-6 sequence. Primer extension analysis showed that regardless of the length of the poly(T) tract, the same transcriptional start site (TSS) was used for expression of Interestingly, the T-6 tract correlated with a higher level of both expression and gonococcal resistance to NorM substrates BE and EB.

View Article and Find Full Text PDF

Even in the vaccine era, (the pneumococcus) remains a leading cause of otitis media, a significant public health burden, in large part because of the high prevalence of nasal colonization with the pneumococcus in children. The primary pneumococcal neuraminidase, NanA, which is a sialidase that catalyzes the cleavage of terminal sialic acids from host glycoconjugates, is involved in both of these processes. Coinfection with influenza A virus, which also expresses a neuraminidase, exacerbates nasal colonization and disease by , in part via the synergistic contributions of the viral neuraminidase.

View Article and Find Full Text PDF

The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms.

View Article and Find Full Text PDF

During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.

View Article and Find Full Text PDF

Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae.

View Article and Find Full Text PDF

Streptococcus pneumoniae (pneumococcus) is both a widespread nasal colonizer and a leading cause of otitis media, one of the most common diseases of childhood. Pneumococcal phase variation influences both colonization and disease and thus has been linked to the bacteria's transition from colonizer to otopathogen. Further contributing to this transition, coinfection with influenza A virus has been strongly associated epidemiologically with the dissemination of pneumococci from the nasopharynx to the middle ear.

View Article and Find Full Text PDF

Otitis media (OM) is an extremely common pediatric ailment caused by opportunists that reside within the nasopharynx. Inflammation within the upper airway can promote ascension of these opportunists into the middle ear chamber. OM can be chronic/recurrent in nature, and a wealth of data indicates that in these cases, the bacteria persist within biofilms.

View Article and Find Full Text PDF