Quantum dots (QDs), an important class of emerging nanomaterial, are widely anticipated to find application in many consumer and clinical products in the near future. Premarket regulatory scrutiny is, thus, an issue gaining considerable attention. Previous review papers have focused primarily on the toxicity of QDs.
View Article and Find Full Text PDFObjective: To characterize a novel splice variant of the alpha subunit of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMRalpha), which we discovered in human neutrophils.
Methods: We used reverse transcriptase polymerase chain reaction to identify, characterize, and examine the expression of a novel splice variant of the GMRalpha transcript. At the protein level, surface plasmon resonance was used to measure the affinity of a recombinant soluble form of the novel GMRalpha protein for GM-CSF ligand.
The integrity of the human genome is preserved by signal transduction pathways called checkpoints, which delay progression through the cell cycle when DNA damage is present. Three checkpoint proteins, hRad9, hRad1, and hHus1, form a proliferating cell nuclear antigen-like, heterotrimeric complex that has been proposed to function in the initial detection of DNA structural abnormalities. hRad9 is highly modified by phosphorylation, in a constitutive manner and in response to both DNA damage and cell cycle position.
View Article and Find Full Text PDFSoluble GM-CSF receptor alpha subunit (sGMRalpha) is a soluble isoform of the GMRalpha that is believed to arise exclusively through alternative splicing of the GMRalpha gene product. The sGMRalpha mRNA is expressed in a variety of tissues, but it is not clear which cells are capable of secreting the protein. We show here that normal human monocytes, but not lymphocytes, constitutively secrete sGMRalpha.
View Article and Find Full Text PDF