Publications by authors named "Jennifer L Moody"

Endoglin is a transforming growth factor-beta (TGF-beta) accessory receptor recently identified as being highly expressed on long-term repopulating hematopoietic stem cells (HSC). However, little is known regarding its function in these cells. We have used two complementary approaches toward understanding endoglin's role in HSC biology: one that efficiently knocks down expression via lentiviral-driven short hairpin RNA and another that uses retroviral-mediated overexpression.

View Article and Find Full Text PDF

Members of the transforming growth factor beta (TGF-beta) superfamily of growth factors have been shown to regulate the in vitro proliferation and maintenance of hematopoietic stem cells (HSCs). Working at a common level of convergence for all TGF-beta superfamily signals, Smad4 is key in orchestrating these effects. The role of Smad4 in HSC function has remained elusive because of the early embryonic lethality of the conventional knockout.

View Article and Find Full Text PDF

The Smad-signaling pathway downstream of the transforming growth factor-beta superfamily of ligands is an evolutionarily conserved signaling circuitry with critical functions in a wide variety of biologic processes. To investigate the role of this pathway in the regulation of hematopoietic stem cells (HSCs), we have blocked Smad signaling by retroviral gene transfer of the inhibitory Smad7 to murine HSCs. We report here that the self-renewal capacity of HSCs is promoted in vivo upon blocking of the entire Smad pathway, as shown by both primary and secondary bone marrow (BM) transplantations.

View Article and Find Full Text PDF

Smad5 is known to transduce intracellular signals from bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-beta (TGF-beta) superfamily and are involved in the regulation of hematopoiesis. Recent findings suggest that BMP4 stimulates proliferation of human primitive hematopoietic progenitors in vitro, while early progenitors from mice deficient in Smad5 display increased self-renewal capacity in murine embryonic hematopoiesis. Here, we evaluate the role of Smad5 in the regulation of hematopoietic stem cell (HSC) fate decisions in adult mice by using an inducible MxCre-mediated conditional knockout model.

View Article and Find Full Text PDF
Article Synopsis
  • The TGF-beta superfamily includes various ligands and receptors that influence stem cell behavior, specifically in hematopoietic stem cells (HSCs).
  • This study investigates how TGF-beta, BMPs, and Activins affect HSCs and a specific progenitor cell line (Lhx2-HPC), finding significant similarities in their expression profiles.
  • Results indicate that both cell types respond similarly to ligands, showing Activin-A has a suppressive effect on cell proliferation, while BMP-4 does not have any impact, thereby supporting the Lhx2-HPC line as a useful model for studying Smad signaling in HSCs.
View Article and Find Full Text PDF

The myeloproliferative disorder of mice lacking the Src homology 2 (SH2)-containing 5' phosphoinositol phosphatase, SHIP, underscores the need for closely regulating phosphatidylinositol 3-kinase (PI3K) pathway activity, and hence levels of phosphatidylinositol species during hematopoiesis. The role of the 3' phosphoinositol phosphatase Pten in this process is less clear, as its absence leads to embryonic lethality. Despite Pten heterozygosity being associated with a lymphoproliferative disorder, we found no evidence of a hematopoietic defect in Pten(+/-) mice.

View Article and Find Full Text PDF