Publications by authors named "Jennifer L Hoeflinger"

Human milk enriches members of the genus in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B.

View Article and Find Full Text PDF

Background: Bovine lactoferrin (bLf) reduces infection in premature infants and promotes the growth of , a predominant infant gut species. We hypothesized that bLf in combination with would reduce the severity of systemic infection.

Objective: The aim was to determine the effects of oral administration of bLf and on the course of systemic infection.

View Article and Find Full Text PDF

Human milk contains high concentrations of nondigestible complex oligosaccharides (human milk oligosaccharides; HMO) that reach the colon and are subsequently fermented by the infant gut microbiota. Using a high-throughput, low-volume growth determination, we evaluated the ability of 12 lactobacilli and 12 bifidobacteria strains, including several commercial probiotics, to ferment HMO and their constituent monomers. Of the 24 strains tested, only Bifidobacterium longum ssp.

View Article and Find Full Text PDF

Galactooligosaccharides (GOS) are bifidogenic and lactogenic prebiotics; however, GOS utilization is strain-dependent. In this study, commercially available bifidobacteria and lactobacilli probiotic strains were evaluated for growth in the presence of GOS. Several bifidobacteria and lactobacilli grew on GOS; however, the specific GOS oligomers utilized for growth differed.

View Article and Find Full Text PDF

is an opportunistic nosocomial and foodborne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. Little is known about the pathogenesis mechanism of this pathogen and if there are any consequences of colonization in healthy individuals. In this study, we characterized the mechanisms of autoaggregation in ATCC 29544 (CS29544).

View Article and Find Full Text PDF

Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP) hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control) or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli.

View Article and Find Full Text PDF

There is interest in novel fibers as potential prebiotics for new and reformulated food products. Two konjac glucomannan (KGM) hydrolysates were developed by enzymatic hydrolysis with (KGMH I) or without (KGMH II) mechanical shear pre-treatment. These were characterized and evaluated as fermentation substrates using five lactobacilli and three bifidobacteria.

View Article and Find Full Text PDF

Herein, an open-source method to generate quantitative bacterial growth data from high-throughput microplate assays is described. The bacterial lag time, maximum specific growth rate, doubling time and delta OD are reported. Our method was validated by carbohydrate utilization of lactobacilli, and visual inspection revealed 94% of regressions were deemed excellent.

View Article and Find Full Text PDF

Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC.

View Article and Find Full Text PDF

Recently, prebiotic supplementation of infant formula has become common practice; however the impact on the intestinal microbiota has not been completely elucidated. In this study, neonatal piglets were randomized to: formula (FORM, n = 8), formula supplemented with 2 g/L each galactooligosaccharides (GOS) and polydextrose (PDX, F+GP, n = 9) or a sow-reared (SOW, n = 12) reference group for 19 days. The ileal (IL) and ascending colon (AC) microbiota were characterized using culture-dependent and -independent methods.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs) function as prebiotics in the infant gut by selecting for specific species of bifidobacteria and bacteroides, but little is known about their potential utilization by Enterobacteriaceae, the relative numbers of which have been linked to the onset of necrotizing enterocolitis in preterm infants. In this study, the in vitro growth of purified HMOs and other related carbohydrates was evaluated using individual strains of Enterobacteriaceae and an Enterobacteriaceae consortia enriched from piglet feces. None of the Enterobacteriaceae strains grew on 2'-fucosyllactose, 6'-sialyllactose, or lacto-N-neotetraose (LNnT); however, several strains were capable of utilizing galactooligosaccharides, maltodextrin, and the mono- and disaccharide components of HMOs for growth.

View Article and Find Full Text PDF

Pigs from a variety of sources were surveyed for oro-gastrointestinal (oro-GIT) carriage of Candida albicans. Candida albicans-positive animals were readily located, but we also identified C. albicans-free pigs.

View Article and Find Full Text PDF

The effects of consuming foods on the intestinal microbiome of obese individuals remain unclear. The objective of this study was to compare the effects of consuming low glycinin soymilk (LGS, 49.5% β-conglycinin/6% glycinin), conventional soymilk (S, 26.

View Article and Find Full Text PDF

Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334.

View Article and Find Full Text PDF