Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected cattle.
View Article and Find Full Text PDFBovine viral diarrhoea virus 1 (BVDV-1) is strongly associated with several important diseases of cattle, such as bovine respiratory disease, diarrhoea and haemoragic lesions. To date many subgenotypes have been reported for BVDV-1, currently ranging from subgenotype 1a to subgenotype 1u. While BVDV-1 has a world-wide distribution, the subgenotypes have a more restricted geographical distribution.
View Article and Find Full Text PDFMeleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek's disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics.
View Article and Find Full Text PDFBovine herpesvirus 1 (BoHV-1) is an economically important pathogen of cattle associated with respiratory and reproductive disease. To further develop BoHV-1 as a vaccine vector, a study was conducted to identify the essential and non-essential genes required for in vitro viability. Random-insertion mutagenesis utilizing a Tn5 transposition system and targeted gene deletion were employed to construct gene disruption and gene deletion libraries, respectively, of an infectious clone of BoHV-1.
View Article and Find Full Text PDFThe partial gene sequencing of the matrix (M) protein from seven clinical isolates of bovine parainfluenza virus type 3 (BPIV-3), and the complete sequencing of a representative isolate (Q5592) was completed in this study. Nucleotide sequence analysis was initiated because of the failure of in-house BPIV-3 RT-PCR methods to yield expected products for four of the isolates. Phylogenetic reconstructions based on the nucleotide sequences for the M-protein and the entire genome, using all of the available BPIV-3 nucleotide sequences, demonstrated that there were two distinct BPIV-3 genotypes (BPIV-3a and BPIV-3b).
View Article and Find Full Text PDFEighty-nine bovine viral diarrhoea viruses (BVDV) from Australia have been genetically typed by sequencing of the 5' untranslated region (5'-UTR) and for selected isolates the N(pro) region of the viral genome. Phylogenetic reconstructions indicated that all of the samples examined clustered within the BVDV type 1 genotype. Of the 11 previously described genetic groups of BVDV-1, 87 of the samples examined in this study clustered with the BVDV-1c, while two samples clustered with the BVDV-1a.
View Article and Find Full Text PDFThe application of infectious clone technology to herpesvirus biology has revolutionized the study of these viruses. Previously the ability to manipulate these large DNA viruses was limited to methods dependent on homologous recombination in mammalian cells. However, the construction of herpesvirus infectious clones using bacterial artificial chromosome vectors has permitted the application of powerful bacterial genetics for the manipulation of these viruses.
View Article and Find Full Text PDFBovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle. Recombinant bovine herpesvirus 1 viruses (rBoHV) have been studied extensively as potential vaccines for BoHV-1 associated diseases. A method is described which advances protocols used currently for constructing rBoHV by producing recombinant viruses free of parent virus.
View Article and Find Full Text PDFThe complete genome of bovine herpesvirus 1 (BoHV-1) strain V155 has been cloned as a bacterial artificial chromosome (BAC). Following electroporation into Escherichia coli strain DH10B, the BoHV-1 BAC was stably propagated over multiple generations of its host. BAC DNA recovered from DH10B cells and transfected into bovine cells produced a cytopathic effect which was indistinguishable from that of the parent virus.
View Article and Find Full Text PDF