To ensure the previous progress seen in cancer survival rates continues as we move through the 21st Century it is important to determine future effective policy related to oncology healthcare delivery and funding. Recent successes with, for example, the COVID vaccine response, the decision-making agility exhibited by governments and healthcare systems and the effective use of telehealth and real-world evidence highlight the progress that can be made with pooled efforts and innovative thinking. This shared approach is the basis for the European Beating Cancer Plan which outlines action points for governments and health systems for the period 2021-2025.
View Article and Find Full Text PDFCancer can have profound social and economic consequences for people in India, often leading to family impoverishment and societal inequity. Reported age-adjusted incidence rates for cancer are still quite low in the demographically young country. Slightly more than 1 million new cases of cancer are diagnosed every year in a population of 1.
View Article and Find Full Text PDFStartle disease is a rare, potentially fatal neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden unexpected auditory, visual or tactile stimuli. Mutations in the GlyR α(1) subunit gene (GLRA1) are the major cause of this disorder, since remarkably few individuals with mutations in the GlyR β subunit gene (GLRB) have been found to date. Systematic DNA sequencing of GLRB in individuals with hyperekplexia revealed new missense mutations in GLRB, resulting in M177R, L285R and W310C substitutions.
View Article and Find Full Text PDFHereditary hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, leading to hypertonia and apnea episodes. Missense, nonsense, frameshift, splice site mutations, and large deletions in the human glycine receptor α1 subunit gene (GLRA1) are the major known cause of this disorder. However, mutations are also found in the genes encoding the glycine receptor β subunit (GLRB) and the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 (SLC6A5).
View Article and Find Full Text PDFStartle disease affects newborn children and involves an exaggerated startle response and muscle hypertonia in response to acoustic or tactile stimuli. The primary cause of startle disease is defective inhibitory glycinergic transmission due to mutations in the postsynaptic glycine receptor (GlyR) α1 subunit gene (GLRA1). However, mutations have also been discovered in the genes encoding the GlyRβ subunit (GLRB) and the presynaptic glycine transporter GlyT2 (SLC6A5).
View Article and Find Full Text PDFEpisodic falling syndrome (EFS) is a canine paroxysmal hypertonicity disorder found in Cavalier King Charles spaniels. Episodes are triggered by exercise, stress or excitement and characterized by progressive hypertonicity throughout the thoracic and pelvic limbs, resulting in a characteristic 'deer-stalking' position and/or collapse. We used a genome-wide association strategy to map the EFS locus to a 3.
View Article and Find Full Text PDFDefects in glycinergic synaptic transmission in humans, cattle, and rodents result in an exaggerated startle reflex and hypertonia in response to either acoustic or tactile stimuli. Molecular genetic studies have determined that mutations in the genes encoding the postsynaptic glycine receptor (GlyR) α1 and β subunits (GLRA1 and GLRB) and the presynaptic glycine transporter GlyT2 (SLC6A5) are the major cause of these disorders. Here, we report the first genetically confirmed canine cases of startle disease.
View Article and Find Full Text PDFThe aim of this study was to evaluate the effects of 28 single nucleotide polymorphisms (SNP) in 10 candidate genes previously shown to be associated with quality traits in pigs and cattle. The data set comprised 28 traits recorded on a commercial population of 536 Aberdeen Angus-cross beef cattle. Among the traits, 20 were carcass and sirloin quality related, one mechanical measure of tenderness, and the remaining seven were taste panel assessed sensory traits.
View Article and Find Full Text PDFBackground: The purpose of this study was to evaluate the effects of eight single nucleotide polymorphisms (SNP), previously associated with meat and milk quality traits in cattle, in a population of 443 commercial Aberdeen Angus-cross beef cattle. The eight SNP, which were located within five genes: mu-calpain (CAPN1), calpastatin (CAST), leptin (LEP), growth hormone receptor (GHR) and acylCoA:diacylglycerol acyltransferase 1 (DGAT1), are included in various commercial tests for tenderness, fatness, carcass composition and milk yield/quality.
Methods: A total of 27 traits were examined, 19 relating to carcass quality, such as carcass weight and fatness, one mechanical measure of tenderness, and the remaining seven were sensory traits, such as flavour and tenderness, assessed by a taste panel.