The biotechnological potential of Rieske Oxygenases (ROs) and their cognate reductases remains unmet, in part because these systems can be functionally short-lived. Here, we describe a set of experiments aimed at identifying both the functional and structural stability limitations of ROs, using terephthalate (TPA) dioxygenase (from Comamonas strain E6) as a model system. Successful expression and purification of a cofactor-complete, histidine-tagged TPA dioxygenase and reductase protein system requires induction with the Escherichia coli host at stationary phase as well as a chaperone inducing cold-shock and supplementation with additional iron, sulfur, and flavin.
View Article and Find Full Text PDFHeme is the most abundant species of iron inside the human body and an essential cofactor for numerous electron/chemical group transfer reactions and catalyses, especially those involving O. Whole anaerobic biomes exist that also depend on heme but lack widespread, O-dependent pathways for heme synthesis and breakdown. The gastrointestinal tract is an anaerobic ecosystem where many microbes are auxotrophic for heme, and where the abundant members of the Bacteroidetes phylum convert heme into iron and porphyrins.
View Article and Find Full Text PDFTraditional studies of cellular metabolism have relied on the use of radioisotopes. These have clear disadvantages associated with safety and waste generation. Furthermore, detection of the labeled species by scintillation counting provides only a quantification of its presence or absence.
View Article and Find Full Text PDFRieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPA PDB ID 7Q05) is a structurally characterized heterohexameric αβ RO that, with its cognate reductase (TPA), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion.
View Article and Find Full Text PDFAcetone carboxylases (ACs) catalyze the metal- and ATP-dependent conversion of acetone and bicarbonate to form acetoacetate. Interestingly, two homologous ACs that have been biochemically characterized have been reported to have different metal complements, implicating different metal dependencies in catalysis. ACs from proteobacteria and share 68% sequence identity but have been proposed to have different catalytic metals.
View Article and Find Full Text PDFMembers of the phylum are abundant in healthy gastrointestinal (GI) tract flora. Bacteroides thetaiotaomicron is a commensal heme auxotroph and representative of this group. are sensitive to host dietary iron restriction but proliferate in heme-rich environments that are also associated with colon cancer.
View Article and Find Full Text PDFEnzymatic deconstruction of poly(ethylene terephthalate) (PET) is under intense investigation, given the ability of hydrolase enzymes to depolymerize PET to its constituent monomers near the polymer glass transition temperature. To date, reported PET hydrolases have been sourced from a relatively narrow sequence space. Here, we identify additional PET-active biocatalysts from natural diversity by using bioinformatics and machine learning to mine 74 putative thermotolerant PET hydrolases.
View Article and Find Full Text PDFMercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported.
View Article and Find Full Text PDFEsterase enzymes catalyze diverse hydrolysis reactions with important biological, commercial, and biotechnological applications. For the improvement of these biocatalysts, there is a need for widely accessible, inexpensive, and adaptable activity screening assays that identify enzymes with particular substrate specificities. Natural systems for biopolymer bioconversion, and likely those designed to mimic them, depend on cocktails of enzymes, each of which specifically targets the intact material as well as water-soluble subunits of varying size.
View Article and Find Full Text PDF2-Ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a member of the flavin and cysteine disulfide containing oxidoreductase family (DSOR) that catalyzes the unique reaction between atmospheric CO and a ketone/enolate nucleophile to generate acetoacetate. However, the mechanism of this reaction is not well understood. Here, we present evidence that 2-KPCC, in contrast to the well-characterized DSOR enzyme glutathione reductase, undergoes conformational changes during catalysis.
View Article and Find Full Text PDFSignificanceMore than 400 million tons of plastic waste is produced each year, the overwhelming majority of which ends up in landfills. Bioconversion strategies aimed at plastics have emerged as important components of enabling a circular economy for synthetic plastics, especially those that exhibit chemically similar linkages to those found in nature, such as polyesters. The enzyme system described in this work is essential for mineralization of the xenobiotic components of poly(ethylene terephthalate) (PET) in the biosphere.
View Article and Find Full Text PDFBiological funneling of lignin-derived aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of -methoxy-aryl groups, an essential and often rate-limiting step. The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the methoxy-aryl group in guaiacol.
View Article and Find Full Text PDFThe valorization of lignin is critical to establishing sustainable biorefineries as we transition away from petroleum-derived feedstocks. Advances in lignin fractionation and depolymerization are yielding new opportunities for the biocatalytic upgrading of lignin-derived aromatic compounds (LDACs) using microbial cell factories. Given their roles in lignin metabolism and their catalytic versatility, cytochromes P450 are attractive enzymes in engineering such biocatalysts.
View Article and Find Full Text PDFThe 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) enzyme is the only member of the disulfide oxidoreductase (DSOR) family of enzymes, which are important for reductively cleaving S-S bonds, to have carboxylation activity. 2-KPCC catalyzes the conversion of 2-ketopropyl-coenzyme M to acetoacetate, which is used as a carbon source, in a controlled reaction to exclude protons. A conserved His-Glu motif present in DSORs is key in the protonation step; however, in 2-KPCC, the dyad is substituted by Phe-His.
View Article and Find Full Text PDFArchaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome (Cyt ) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F) derivatives.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2021
Iron is an essential micronutrient for life. In mammals, dietary iron is absorbed primarily in the small intestine. Currently, the impacts of dietary iron on the taxonomic structure and function of the gut microbiome and reciprocal effects on the animal host are not well understood.
View Article and Find Full Text PDFAlkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2020
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of monocopper enzymes broadly distributed across the tree of life. Recent reports indicate that LPMOs can use HO as an oxidant and thus carry out a novel type of peroxygenase reaction involving unprecedented copper chemistry. Here, we present a combined computational and experimental analysis of the HO-mediated reaction mechanism.
View Article and Find Full Text PDFThe role of the chemical environment in promoting anthralin/O reactions was discovered using neat solvents to model the amino acids of a cofactor-independent oxygenase. Experimental and computational results highlight the importance of the substrate-enolate, which is accessed via energetically small, escalating steps in which the ground-state keto-isomer is tautomerized to an enol and then ionized by solvent. The resulting ion-pair is poised for spontaneous electron transfer to O.
View Article and Find Full Text PDFThe pathway for assembling heme ends with a unique set of enzymes in Gram-positive bacteria. Substrates for these reactions include coproporphyrin III, Fe(II), and HO, which are highly reactive and toxic. Because these bacteria lack membranous compartments, we hypothesized that metabolite flux may occur via a transient protein-protein interaction between the final two pathway enzymes, coproporphyrin ferrochelatase (CpfC) and coproheme decarboxylase (ChdC).
View Article and Find Full Text PDFMicrobial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is -aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol.
View Article and Find Full Text PDFMechanisms for making and breaking the heme b cofactor (heme) are more diverse than previously expected. Biosynthetic pathways have diverged at least twice along taxonomic lines, reflecting differences in membrane organization and O utilization among major groups of organisms. At least three families of heme degradases are now known, again differing in whether and how O is used by the organism and possibly the purpose for turning over the tetrapyrrole.
View Article and Find Full Text PDFMolecular oxygen (O)-utilizing enzymes are among the most important in biology. The abundance of O, its thermodynamic power, and the benign nature of its end products have raised interest in oxidases and oxygenases for biotechnological applications. Although most O-dependent enzymes have an absolute requirement for an O-activating cofactor, several classes of oxidases and oxygenases accelerate direct reactions between substrate and O using only the protein environment.
View Article and Find Full Text PDFClostridium difficile is a Gram-positive, spore-forming anaerobic bacterium that infects the colon, causing symptoms ranging from infectious diarrhea to fulminant colitis. In the last decade, the number of C. difficile infections has dramatically risen, making it the leading cause of reported hospital acquired infection in the United States.
View Article and Find Full Text PDF