The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure.
View Article and Find Full Text PDFTransforming growth factor beta 1 (TGF-beta1) upregulation has been implicated in hypertrophic scars and keloids, but it is unclear if it is the cause or an effect of excessive scar formation. In this study, we overexpressed TGF-beta1 in fibroblasts and characterized its role. Normal human dermal fibroblasts were genetically modified to overexpress TGF-beta1 as the wild-type latent molecule or as a mutant constitutively active molecule.
View Article and Find Full Text PDFThe tetra-anionic form of ATP (ATP4-) is known to induce monovalent and divalent ion fluxes in cells that express purinergic P2X7 receptors and with sustained application of ATP it has been shown that dyes as large as 831 Da can permeate the cell membrane. The current study explores the kinetics of loading alpha,alpha-trehalose (342 Da) into ATP stimulated J774.A1 cells, which are known to express the purinergic P2X7 receptor.
View Article and Find Full Text PDF