Caulobacter crescentus attachment is mediated by the holdfast, a complex of polysaccharide anchored to the cell by HfaA, HfaB and HfaD. We show that all three proteins are surface exposed outer membrane (OM) proteins. HfaA is similar to fimbrial proteins and assembles into a high molecular weight (HMW) form requiring HfaD, but not holdfast polysaccharide.
View Article and Find Full Text PDFPlasmodium vivax Duffy binding protein (DBP) is a merozoite microneme ligand vital for blood-stage infection, which makes it an important candidate vaccine for antibody-mediated immunity against vivax malaria. A differential screen with a linear peptide array compared the reactivities of noninhibitory and inhibitory high-titer human immune sera to identify target epitopes associated with protective immunity. Naturally acquired anti-DBP-specific serologic responses observed in the residents of a region of Papua New Guinea where P.
View Article and Find Full Text PDFIndividuals repeatedly infected with malaria acquire protection from infection and disease; immunity is thought to be primarily antibody-mediated and directed to blood-stage infection. Merozoite surface proteins involved in the invasion of host erythrocytes are likely targets of protective antibodies. We hypothesized that Papua New Guinean children (n = 206) who acquire high antibody levels to two Plasmodium vivax merozoite proteins, Duffy binding protein region II (PvDBPII) and the 19-kDa C-terminal region of P.
View Article and Find Full Text PDFIndividuals residing in malaria-endemic regions acquire protective immunity after repeated infection with malaria parasites; however, mechanisms of protective immunity and their immune correlates are poorly understood. Blood-stage infection with Plasmodium vivax depends completely on interaction of P. vivax Duffy-binding protein (PvDBP) with the Duffy antigen on host erythrocytes.
View Article and Find Full Text PDFThe interaction between Plasmodium vivax Duffy binding protein II (PvDBPII) and human erythrocyte Duffy antigen is necessary for blood stage infections. However, PvDBPII is highly polymorphic. We recently observed that certain recombinant DBPII variants bind better to erythrocytes in vitro.
View Article and Find Full Text PDFIn a treatment re-infection study of 206 Papua New Guinean school children, we examined risk of reinfection and symptomatic malaria caused by different Plasmodium species. Although children acquired a similar number of polymerase chain reaction-detectable Plasmodium falciparum and P. vivax infections in six months of active follow-up (P.
View Article and Find Full Text PDFIndividuals living in malaria endemic areas are often infected with multiple parasite clones. Currently used single nucleotide polymorphism (SNP) genotyping methods for malaria parasites are cumbersome; furthermore, few methods currently exist that can rapidly determine the most abundant clone in these complex infections. Here we describe an oligonucleotide ligation assay (OLA) to distinguish SNPs in the Plasmodium vivax Duffy binding protein gene (Pvdbp) at 14 polymorphic residues simultaneously.
View Article and Find Full Text PDFAm J Trop Med Hyg
September 2005
Although genetically distinct malaria parasites have been shown to simultaneously infect an individual, the total number of unique parasites has not been systematically studied. We examined multiple clones (8-38) from individual blood samples collected from Papua New Guinean children for polymorphisms in the Plasmodium vivax Duffy binding protein (dbpII) and the merozoite surface protein 3alpha (msp3alpha). We found a median of 4 (range = 2-6) and 12 (range = 2-23) unique genotypes based on dbpII and msp3alpha, respectively, per person at one time point and at least 12-33 unique genotypes per person over a four-month period.
View Article and Find Full Text PDFInteraction of the Duffy binding protein (DBP) with its erythrocyte receptor is critical for maintaining Plasmodium vivax blood-stage infections, making DBP an appealing vaccine candidate. The cysteine-rich region II is the ligand domain of DBP and a target of vaccine development. Interestingly, most of the allelic diversity observed in DBP is due to the high rate of nonsynonymous polymorphisms in this critical domain for receptor recognition.
View Article and Find Full Text PDFErythrocyte invasion by Plasmodium vivax is completely dependent on binding to the Duffy blood group antigen by the parasite Duffy binding protein (DBP). The receptor-binding domain of this protein lies within a cysteine-rich region referred to as region II (DBPII). To examine whether antibody responses to DBP correlate with age-acquired immunity to P.
View Article and Find Full Text PDFThe interaction between the Plasmodium vivax merozoite Duffy binding protein region II (DBPII) and the human erythrocyte Duffy antigen leads to infection. Highly polymorphic regions of this protein may have arisen as a mechanism to avoid host immunity. To examine whether immunity to P.
View Article and Find Full Text PDF