Publications by authors named "Jennifer L Bruno Garza"

Objectives: Alternative techniques to assess physical exposures, such as prediction models, could facilitate more efficient epidemiological assessments in future large cohort studies examining physical exposures in relation to work-related musculoskeletal symptoms. The aim of this study was to evaluate two types of models that predict arm-wrist-hand physical exposures (i.e.

View Article and Find Full Text PDF

Background: Due to difficulties in performing direct measurements as an exposure assessment technique, evidence supporting an association between physical exposures such as neck and shoulder muscle activities and postures and musculoskeletal disorders during computer use is limited. Alternative exposure assessment techniques are needed.

Methods: We predicted the median and range of amplitude (90th-10th percentiles) of trapezius muscle activity and the median and range of motion (90th-10th percentiles) of shoulder, head, neck, and torso postures based on two sets of parameters: the distribution of keyboard/mouse/idle activities only ("task-based" predictions), and a comprehensive set of task, questionnaire, workstation, and anthropometric parameters ("expanded model" predictions).

View Article and Find Full Text PDF

Background: Because of reported associations of psychosocial factors and computer related musculoskeletal symptoms, we investigated the effects of a workplace psychosocial factor, reward, in the presence of over-commitment, on trapezius muscle activity and shoulder, head, neck, and torso postures during computer use.

Methods: We measured 120 office workers across four groups (lowest/highest reward/over-commitment), performing their own computer work at their own workstations over a 2-hr period.

Results: Median trapezius muscle activity (P = 0.

View Article and Find Full Text PDF

Objective: Office workers with high levels of overcommitment and low levels of reward are thought to be more prone to arm-wrist-hand symptoms, possibly through a higher internal physical exposure. The aim of this study was to examine the effects of high overcommitment and low reward on (i) forearm muscle activity, (ii) wrist posture and kinematics, and (iii) forces applied to computer input devices during computer work in an actual work setting.

Methods: We continuously measured wrist extensor muscle activity, wrist posture and kinematics, and forces applied to the keyboard and mouse for two hours during the daily work of 120 office workers with four different levels of overcommitment and reward (low-high, high-high, low-low, and high-low).

View Article and Find Full Text PDF

Appropriately targeted manipulation of endogenous neural stem progenitor (NSP) cells may contribute to therapies for trauma, stroke, and neurodegenerative disease. A prerequisite to such therapies is a better understanding of the mechanisms regulating adult NSP cells in vivo. Indirect data suggest that endogenous ciliary neurotrophic factor (CNTF) receptor signaling may inhibit neuronal differentiation of NSP cells.

View Article and Find Full Text PDF

Prediction models were developed based on keyboard and mouse use in combination with individual factors that could be used to predict median upper extremity muscle activities, postures, velocities, and accelerations experienced during computer use. In the laboratory, 25 participants performed five simulated computer trials with different amounts of keyboard and mouse use ranging from a highly keyboard-intensive trial to a highly mouse-intensive trial. During each trial, muscle activity and postures of the shoulder and wrist and velocities and accelerations of the wrists, along with percentage keyboard and mouse use, were measured.

View Article and Find Full Text PDF