Algal blooms on the Southern California coast are typically dominated by diatom and dinoflagellate taxa, and are governed by their physiological responses to environmental cues; however, we lack a predictive understanding of the environmental controls underlying the establishment and persistence of these distinct bloom events. In this study, we examined gene expression among the numerically dominant diatom and dinoflagellate taxa during spring upwelling bloom events to compare the physiological underpinnings of diatom vs. dinoflagellate bloom dynamics.
View Article and Find Full Text PDFProtistan algae (phytoplankton) dominate coastal upwelling ecosystems where they form massive blooms that support the world's most important fisheries and constitute an important sink for atmospheric CO . Bloom initiation is well understood, but the biotic and abiotic forces that shape short-term dynamics in community composition are still poorly characterized. Here, high-frequency (daily) changes in relative abundance dynamics of the metabolically active protistan community were followed via expressed 18S V4 rRNA genes (RNA) throughout two algal blooms during the spring of 2018 and 2019 in Santa Monica Bay (central Southern California Bight).
View Article and Find Full Text PDF