Publications by authors named "Jennifer L Bean"

Control of intracellular calcium concentrations ([Ca(2+)]i) is essential for neuronal function, and the plasma membrane Ca(2+)-ATPase (PMCA) is crucial for the maintenance of low [Ca(2+)]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca(2+) homeostasis and signal transduction in neurons.

View Article and Find Full Text PDF

Oxidative stress leads to the disruption of calcium homeostasis in brain neurons; however, the direct effects of oxidants on proteins that regulate intracellular calcium ([Ca(2+)](i)) are not known. The calmodulin (CaM)-stimulated plasma membrane Ca(2+)-ATPase (PMCA) plays a critical role in regulating [Ca(2+)](i). Our previous in vitro studies showed that PMCA present in brain synaptic membranes is readily inactivated by a variety of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPase (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling.

View Article and Find Full Text PDF