Chromatin remodeling is required for genome function and is facilitated by ATP-dependent complexes, such as nucleosome remodeling and deacetylase (NuRD). Among its core components is the chromodomain helicase DNA binding protein 3 (CHD3) whose functional significance is not well established. Here, we show that CHD3 co-localizes with the other NuRD subunits, including HDAC1, near the H3K9ac-enriched promoters of the NuRD target genes.
View Article and Find Full Text PDFBackground: The transcription factor GATA3 is a favorable prognostic indicator in estrogen receptor-α (ERα)-positive breast tumors in which it participates with ERα and FOXA1 in a complex transcriptional regulatory program driving tumor growth. GATA3 mutations are frequent in breast cancer and have been classified as driver mutations. To elucidate the contribution(s) of GATA3 alterations to cancer, we studied two breast cancer cell lines, MCF7, which carries a heterozygous frameshift mutation in the second zinc finger of GATA3, and T47D, wild-type at this locus.
View Article and Find Full Text PDFThe tandem PHD (plant homeodomain) fingers of the CHD4 (chromodomain helicase DNA-binding protein 4) ATPase are epigenetic readers that bind either unmodified histone H3 tails or H3K9me3 (histone H3 trimethylated at Lys⁹). This dual function is necessary for the transcriptional and chromatin remodelling activities of the NuRD (nucleosome remodelling and deacetylase) complex. In the present paper, we show that calixarene-based supramolecular hosts disrupt binding of the CHD4 PHD2 finger to H3K9me3, but do not affect the interaction of this protein with the H3K9me0 (unmodified histone H3) tail.
View Article and Find Full Text PDFPR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail 'histone code'.
View Article and Find Full Text PDFCHD4 is a catalytic subunit of the NuRD (nucleosome remodeling and deacetylase) complex essential in transcriptional regulation, chromatin assembly and DNA damage repair. CHD4 contains tandem plant homeodomain (PHD) fingers connected by a short linker, the biological function of which remains unclear. Here we explore the combinatorial action of the CHD4 PHD1/2 fingers and detail the molecular basis for their association with chromatin.
View Article and Find Full Text PDFDuring chromosome duplication, it is essential to replicate not only the DNA sequence, but also the complex nucleoprotein structures of chromatin. Pericentric heterochromatin is critical for silencing repetitive elements and plays an essential structural role during mitosis. However, relatively little is understood about its assembly and maintenance during replication.
View Article and Find Full Text PDFWe evaluated changes in myostatin, follistatin, and MyoD messenger RNA (mRNA) gene expression using eccentric exercise (EE) and concentric exercise (CE) as probes to better understand the mechanisms of muscle hypertrophy in young women. Twelve women performed single-leg maximal eccentric (n = 6, 25 +/- 1 years, 59 +/- 7 kg) or concentric (n = 6, 24 +/- 1 years, 65 +/- 7 kg) isokinetic knee extension exercise for 7 sessions. Muscle biopsies were taken from the vastus lateralis at baseline, 8 hours after the first exercise session, and 8 hours after the seventh exercise session.
View Article and Find Full Text PDFHistone-modifying enzymes play a critical role in modulating chromatin dynamics. In this report we demonstrate that one of these enzymes, PR-Set7, and its corresponding histone modification, the monomethylation of histone H4 lysine 20 (H4K20), display a distinct cell cycle profile in mammalian cells: low at G1, increased during late S phase and G2, and maximal from prometaphase to anaphase. The lack of PR-Set7 and monomethylated H4K20 resulted in a number of aberrant phenotypes in several different mammalian cell types.
View Article and Find Full Text PDFPosttranslational modifications of the DNA-associated histone proteins play fundamental roles in eukaryotic transcriptional regulation. We previously discovered a novel trans-tail histone code involving monomethylated histone H4 lysine 20 (H4K20) and H3 lysine 9 (H3K9); however, the mechanisms that establish this code and its function in transcription were unknown. In this report, we demonstrate that H3K9 monomethylation is dependent upon the PR-Set7 H4K20 monomethyltransferase but independent of its catalytic function, indicating that PR-Set7 recruits an H3K9 monomethyltransferase to establish the trans-tail histone code.
View Article and Find Full Text PDFTo evaluate change in myostatin, follistatin, MyoD and SGT mRNA gene expression using eccentric exercise to study mechanisms of skeletal muscle hypertrophy. Young (28+/-5 years) and older (68+/-6 years) men participated in a bout of maximal single-leg eccentric knee extension on an isokinetic dynamometer at 60 degrees /s: six sets, 12-16 maximal eccentric repetitions. Muscle biopsies of the vastus lateralis were obtained from the dominant leg before exercise and 24 h after exercise.
View Article and Find Full Text PDFThe specific post-translational modifications of the histone proteins are associated with specific DNA-templated processes, such as transcriptional activation or repression. To investigate the biological role(s) of histone H4 lysine 20 (H4 Lys-20) methylation, we created a novel panel of antibodies that specifically detected mono-, di-, or trimethylated H4 Lys-20. We report that the different methylated forms of H4 Lys-20 are compartmentalized within visually distinct, transcriptionally silent regions in the mammalian nucleus.
View Article and Find Full Text PDF