Publications by authors named "Jennifer K Roth"

We present a method to rapidly identify hydrogen-mediated interactions in proteins (e.g., hydrogen bonds, hydrogen bonds, water-mediated hydrogen bonds, salt bridges, and aromatic π-hydrogen interactions) through heavy atom geometry alone, that is, without needing to explicitly determine hydrogen atom positions using either experimental or theoretical methods.

View Article and Find Full Text PDF

Supplementary motor area (SMA), the inferior frontal junction (IFJ), superior frontal junction (SFJ) and parietal cortex are active in many cognitive tasks. In a previous study, we found that subregions of each of these major areas were differentially active in component processes of executive function during working memory tasks. In the present study, each of these subregions was used as a seed in a whole brain functional connectivity analysis of working memory and resting state data.

View Article and Find Full Text PDF

Williams syndrome (WS) is a genetic disorder associated with severe visuospatial deficits, relatively strong language skills, heightened social interest, and increased attention to faces. On the basis of the visuospatial deficits, this disorder has been characterized primarily as a deficit of the dorsal stream, the occipitoparietal brain regions that subserve visuospatial processing. However, some evidence indicates that this disorder may also affect the development of the ventral stream, the occipitotemporal cortical regions that subserve face and object recognition.

View Article and Find Full Text PDF

Functional brain imaging studies have identified a set of brain areas typically activated during cognitive tasks (task-positive brain areas) and another set of brain areas typically deactivated during cognitive tasks (task-negative brain areas). Negative correlations, or anticorrelations, between task-positive and task-negative brain areas have been reported at rest. Furthermore, the strength of these anticorrelations appears to be related to cognitive function.

View Article and Find Full Text PDF

We compared two attentional executive processes: updating, which involved attending to a perceptually present stimulus, and refreshing, which involved attending to a mentally active representation of a stimulus no longer perceptually present. In separate blocks, participants either replaced a word being held in working memory with a different word (update), or they thought back to a just previously seen word that was no longer perceptually present (refresh). Bilateral areas of frontal cortex, supplementary motor area, and parietal cortex were similarly active for both updating and refreshing, suggesting that a common network of areas is recruited to bring information to the current focus of attention.

View Article and Find Full Text PDF

Working memory (WM) is the active maintenance of currently relevant information so that it is available for use. A crucial component of WM is the ability to update the contents when new information becomes more relevant than previously maintained information. New information can come from different sources, including from sensory stimuli (SS) or from long-term memory (LTM).

View Article and Find Full Text PDF

Working memory (WM), the active maintenance of currently relevant information, is a flexible system allowing for fast and frequent goal-directed changes of rehearsed information. Successful WM maintenance prevents interference from distracting stimuli while allowing new task-relevant information to update the contents of WM. We used functional magnetic resonance imaging to show that when WM contents were updated, regardless of stimulus type (faces or houses), a frontoparietal network showed transient increases in activation.

View Article and Find Full Text PDF