Publications by authors named "Jennifer K Parker"

Unlabelled: Class II microcins are antimicrobial peptides that have shown some potential as novel antibiotics. However, to date, only 10 class II microcins have been described, and the discovery of novel microcins has been hampered by their short length and high sequence divergence. Here, we ask if we can use numerical embeddings generated by protein large language models to detect microcins in bacterial genome assemblies and whether this method can outperform sequence-based methods such as BLAST.

View Article and Find Full Text PDF

Class II microcins are antimicrobial peptides that have shown some potential as novel antibiotics. However, to date only ten class II microcins have been described, and discovery of novel microcins has been hampered by their short length and high sequence divergence. Here, we ask if we can use numerical embeddings generated by protein large language models to detect microcins in bacterial genome assemblies and whether this method can outperform sequence-based methods such as BLAST.

View Article and Find Full Text PDF

Small proteins perform a diverse array of functions, from microbial competition, to endocrine signaling, to building biomaterials. Microbial systems that can produce recombinant small proteins enable discovery of new effectors, exploration of sequence activity relationships, and have the potential for delivery. However, we lack simple systems for controlling small-protein secretion from Gram-negative bacteria.

View Article and Find Full Text PDF

Purpose: Carbapenem-resistant Enterobacterales (CRE) are subject to intense global monitoring in an attempt to maintain awareness of prevalent and emerging resistance mechanisms and to inform treatment and infection prevention strategies. CRE and extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales are not usually examined collectively in regards to their shared pool of resistance determinants. Here, we genetically and phenotypically assess clinical isolates of CRE and extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales in the growing region of Central Texas, where CRE are emergent and occurrence of non-carbapenemase-producing-CRE (non-CP-CRE) infections is increasing.

View Article and Find Full Text PDF

Unlabelled: Microcins are peptide antibiotics secreted by Gram-negative bacteria that inhibit the growth of neighboring microbes. They are exported from the cytosol to the environment in a one-step process through a specific type I secretion system (T1SS). While the rules governing export of natural or non-native substrates have been resolved for T1SSs that secrete large proteins, relatively little is known about substrate requirements for peptides exported through T1SSs that secrete microcins.

View Article and Find Full Text PDF

Introduction: Use of antimicrobial drugs (AMDs) in food producing animals has received increasing scrutiny because of concerns about antimicrobial resistance (AMR) that might affect consumers. Previously, investigations regarding AMR have focused largely on phenotypes of selected pathogens and indicator bacteria, such as or . However, genes conferring AMR are known to be distributed and shared throughout microbial communities.

View Article and Find Full Text PDF

Microcins are a class of antimicrobial peptides produced by certain Gram-negative bacterial species to kill or inhibit the growth of competing bacteria. Only 10 unique, experimentally validated class II microcins have been identified, and the majority of these come from Escherichia coli. Although the current representation of microcins is sparse, they exhibit a diverse array of molecular functionalities, uptake mechanisms, and target specificities.

View Article and Find Full Text PDF

Widely considered an anthropogenic phenomenon, antimicrobial resistance (AMR) is a naturally occurring mechanism that microorganisms use to gain competitive advantage. AMR represents a significant threat to public health and has generated criticism towards the overuse of antimicrobial drugs. Livestock have been proposed as important reservoirs for AMR accumulation.

View Article and Find Full Text PDF

Microcins are an understudied and poorly characterized class of antimicrobial peptides. Despite the existence of only 15 examples, all identified from the , microcins display diversity in sequence, structure, target cell uptake, cytotoxic mechanism of action and target specificity. Collectively, these features describe some of the unique means nature has contrived for molecules to cross the 'impermeable' barrier of the Gram-negative bacterial outer membrane and inflict cytotoxic effects.

View Article and Find Full Text PDF

Background: The potential to distribute bacteria resistant to antimicrobial drugs in the meat supply is a public health concern. Market cows make up a fifth of the U.S.

View Article and Find Full Text PDF

Bulk tank milk (BTM) is regularly used for surveillance on dairy farms for disease conditions such as mastitis and Johne's disease. In this study, we used 16S rRNA sequencing and bait-capture enrichment to characterize the microbiota and resistome of BTM, and investigate potential differences between the cream or pellet fractions. A total of 12 BTM samples were taken from 12 Prince Edward Island dairy farms, in Atlantic Canada, in duplicates.

View Article and Find Full Text PDF

Ground beef can be a reservoir for a variety of bacteria, including spoilage organisms, and pathogenic foodborne bacteria. These bacteria can exhibit antimicrobial resistance (AMR) which is a public health concern if resistance in pathogens leads to treatment failure in humans. Culture-dependent techniques are commonly used to study individual bacterial species, but these techniques are unable to describe the whole community of microbial species (microbiome) and the profile of AMR genes they carry (resistome), which is critical for getting a holistic perspective of AMR.

View Article and Find Full Text PDF
Article Synopsis
  • Liver abscesses in feedlot cattle make them less healthy and can cost farmers money.
  • Tylosin, an antibiotic, is used to help prevent these abscesses, but it doesn't work the same for all cattle.
  • This study found that where the cattle are raised affects their bacteria and resistance to antibiotics more than whether they received tylosin.
View Article and Find Full Text PDF

Metagenomic investigations have the potential to provide unprecedented insights into microbial ecologies, such as those relating to antimicrobial resistance (AMR). We characterized the microbial resistome in livestock operations raising cattle conventionally (CONV) or without antibiotic exposures (RWA) using shotgun metagenomics. Samples of feces, wastewater from catchment basins, and soil where wastewater was applied were collected from CONV and RWA feedlot and dairy farms.

View Article and Find Full Text PDF

High rates of homologous recombination (HR) in the bacterial plant pathogen Xylella fastidiosa have been previously detected. This study aimed to determine the extent and explore the ecological significance of HR in the genomes of recombinants experimentally generated by natural transformation and wild-type isolates. Both sets of strains displayed widespread HR and similar average size of recombined fragments consisting of random events (2-10 kb) of inter- and intrasubspecific recombination.

View Article and Find Full Text PDF

Liver abscesses in feedlot cattle form secondary to high concentrate feeds and rumen acidosis. Antimicrobial drugs are commonly included in cattle feed for prevention of liver abscesses, but concerns regarding antimicrobial resistance have increased the need for alternative treatments. A block randomized clinical trial was conducted to evaluate the effects of a Saccharomyces cerevisiae fermentation product (SCFP) on liver abscesses, fecal microbiomes, and resistomes in cattle raised without antibiotics in a Colorado feedlot.

View Article and Find Full Text PDF

Background: Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for < 1% of all sequenced DNA, leading to limitations in detection of low-abundance resistome-virulome elements.

View Article and Find Full Text PDF

The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear.

View Article and Find Full Text PDF

Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching.

View Article and Find Full Text PDF

The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X.

View Article and Find Full Text PDF

Huanglongbing, or citrus greening disease, is associated with infection by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus'. Infection with 'Ca. L.

View Article and Find Full Text PDF

Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.

View Article and Find Full Text PDF

Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X.

View Article and Find Full Text PDF

Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes.

View Article and Find Full Text PDF