Publications by authors named "Jennifer K Ocasio"

Background: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality.

Methods: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions.

View Article and Find Full Text PDF

Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M.

View Article and Find Full Text PDF

Cell cycle progression is a vital aspect of neural development. Repeated cell division in neural progenitor populations amplifies the numbers of specific cell types and is required to prevent growth failure that manifests as microcephaly. Regulated cycling is also required for cell fate specification.

View Article and Find Full Text PDF

In vitro studies allow the manipulation and sampling of the cellular environment. Using freshly explanted cerebellar granule neuron progenitors (CGNPs) for in vitro studies of neural progenitors avoids the potential confounding effect of culturing cell lines that have adapted to the in vitro environment. CGNPs can be cultured in vitro for up to 72 h, and during this period, they will demonstrate SHH-driven proliferation that wanes over time and differentiation that increases over time, approximating their typical developmental trajectory.

View Article and Find Full Text PDF

Brain growth reflects the proliferation dynamics of neural progenitors, and understanding brain growth requires molecular, genetic, and functional studies of these specific cells. Cerebellar granule neuron progenitors (CGNPs) proliferate in the early postnatal period in both mice and humans, to generate the largest population of neurons in the central nervous system. CGNPs present a large, spatially segregated source of neural progenitors with a consistent, well-characterized temporal pattern of proliferation and differentiation that facilitates analysis.

View Article and Find Full Text PDF

It is unclear why medulloblastoma patients receiving similar treatments experience different outcomes. Transcriptomic profiling identified subgroups with different prognoses, but in each subgroup, individuals remain at risk of incurable recurrence. To investigate why similar-appearing tumors produce variable outcomes, we analyzed medulloblastomas triggered in transgenic mice by a common driver mutation expressed at different points in brain development.

View Article and Find Full Text PDF

Targeting oncogenic pathways holds promise for brain tumor treatment, but inhibition of Sonic Hedgehog (SHH) signaling has failed in SHH-driven medulloblastoma. Cellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq and lineage tracing, we analyzed cellular diversity in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib.

View Article and Find Full Text PDF

Cerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia whereas excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although sonic hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms downregulating proliferation are less defined.

View Article and Find Full Text PDF

While treatments that induce DNA damage are commonly used as anticancer therapies, the mechanisms through which DNA damage produces a therapeutic response are incompletely understood. Here we have tested whether medulloblastomas must be competent for apoptosis to be sensitive to radiotherapy. Whether apoptosis is required for radiation sensitivity has been controversial.

View Article and Find Full Text PDF