To date, the most commonly used column characterization databases do not determine the relative positive charge associated with new generation RP columns, or they fail to successfully discriminate between RP columns of purportedly low level positive and neutral characters. This paper rectifies this in that it describes a convenient and robust chromatographic procedure for the assessment of the low levels of positive charge on a range of RP columns. The low degree of positive charge was determined by their electrostatic attraction towards the negatively charged 4-n-octylbenzene sulfonic acid (4-OBSA) relative to their retention of the hydrophobic marker toluene (Tol).
View Article and Find Full Text PDFThis study describes the first reported development of a rapid, generic gradient Ultra-High Performance Liquid Chromatography (UHPLC) methodology with targeted triple quadrupole MS/MS using electrospray positive ionisation to detect and unambiguously confirm the identity of 33 substituted 1, 2-diarylethamine (or diphenidine) derivatives in solid drug samples. The in-house synthesised library included a range of derivatives possessing either electron donating/withdrawing substituents, commonly included in combinatorial libraries, of varying size and lipophilicity on the phenyl ring. These test probes were used to investigate if their order of elution and that of their regioisomers were dependent on the position and type of the substituent on the phenyl ring.
View Article and Find Full Text PDFSupercritical Fluid Chromatography (SFC-UV) employing a carbon dioxide (CO) and 10 mM ammonium acetate in MeOH-water (95:5 v/v) gradient provides a rapid analysis (t <10 min) of 31 novel, regioisomeric diphenidine-derived psychoactive substances, on a range of stationary phases of differing polarity. Medium to large selectivity differences between regioisomers, were observed on the acidic, neutral and basic SFC phases. For individual substituted ortho-, meta- and para-isomers, the same elution order was observed irrespective of the nature of the stationary phase.
View Article and Find Full Text PDFThe paper describes a simple and rapid reversed-phase UHPLC method development screening strategy for the purity determination of peptide-based pharmaceuticals. The protocol utilises five disparate column and six volatile or non-volatile mobile phases (i.e.
View Article and Find Full Text PDFThe differentiation of mobile phase compositions between sub-classes which exhibit distinct chromatographic selectivity (i.e. termed characterisation) towards a range of peptide probes with diverse functionality and hence the possibility for multi-modal retention mechanisms has been undertaken.
View Article and Find Full Text PDFThe Peptide RPC Column Characterisation Protocol was applied to 38 stationary phases, varying in ligand chemistry, base silica, end capping and pore size, which are suitable for the analysis of peptides. The protocol at low and intermediate pH is based on measuring retention time differences between peptides of different functionality to calculate selectivity delta values. The characterisation was designed to explore increases / decreases in positive or negative charge (deamidation), steric effect (i.
View Article and Find Full Text PDFA protocol was defined which utilised peptides as probes for the characterisation of reversed phase chromatography peptide separation systems. These peptide probes successfully distinguished between differing stationary phases through the probe's hydrophobic, electrostatic, hydrogen bonding and aromatic interactions with the stationary phase, in addition, to more subtle interactions such as the phase's ability to separate racemic or isomeric probes. The dominating forces responsible for the chromatographic selectivity of peptides appear to be hydrophobic as well as electrostatic and polar in nature.
View Article and Find Full Text PDFThe robustness of the Peptide Reversed Phase Chromatography (RPC) Column Characterisation Protocol was evaluated using reduced factorial design, to ascertain the degree of control required for parameters including temperature, flow rate, dwell volume, a systematic shift in the gradient, amount of formic acid in the aqueous and organic, pH of the ammonium formate and amount of acetonitrile (%MeCN) in the strong solvent, where a loss of MeCN resulted in an unacceptable variation. Mitigations have been introduced to ensure the integrity of the data to allow RPC columns to be characterised using peptides as probes, with the definitive protocol described. In addition, the instrument and column batch to batch variability were assessed with good reproducibility.
View Article and Find Full Text PDF