Publications by authors named "Jennifer K Colby"

Pancreatic intraepithelial neoplasia (PanIN) is a precursor of pancreatic ductal adenocarcinoma (PDAC), which commonly occurs in the general populations with aging. Although most PanIN lesions (PanINs) harbor oncogenic KRAS mutations that initiate pancreatic tumorigenesis; PanINs rarely progress to PDAC. Critical factors that promote this progression, especially targetable ones, remain poorly defined.

View Article and Find Full Text PDF

Selective intra-bronchial instillation of hydrochloric acid (HCl) to the murine left mainstem bronchus causes acute tissue injury with histopathologic findings similar to human acute respiratory distress syndrome (ARDS). The resulting alveolar edema, alveolar-capillary barrier damage, and leukocyte infiltration predominantly affect the left lung, preserving the right lung as an uninjured control and allowing animals to survive. This model of self-limited acute lung injury enables investigation of tissue resolution mechanisms, such as macrophage efferocytosis of apoptotic neutrophils and restitution of alveolar-capillary barrier integrity.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-delta (PPAR-δ), one of three members of the PPAR group in the nuclear receptor superfamily, is a ligand-activated transcription factor. PPAR-δ regulates important cellular metabolic functions that contribute to maintaining energy balance. PPAR-δ is especially important in regulating fatty acid uptake, transport, and β-oxidation as well as insulin secretion and sensitivity.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) are enzymatically converted to a variety of bioactive products through insertion of molecular oxygen. PUFA-derived mediators can have either inflammatory or anti-inflammatory/pro-resolving properties, depending upon their specific structures. The relative harm or benefit of these mediators can also be tissue and context dependent.

View Article and Find Full Text PDF

Specialized proresolving mediators (SPMs) decrease NF-κB activity to prevent excessive tissue damage and promote the resolution of acute inflammation. Mechanisms for NF-κB regulation by SPMs remain to be determined. In this study, after LPS challenge, the SPMs 15-epi-lipoxin A (15-epi-LXA), resolvin D1, resolvin D2, resolvin D3, and 17-epi-resolvin D1 were produced in vivo in murine lungs.

View Article and Find Full Text PDF

Acute lung injury is a life-threatening condition caused by disruption of the alveolar-capillary barrier leading to edema, influx of inflammatory leukocytes, and impaired gas exchange. Specialized proresolving mediators biosynthesized from essential fatty acids, such as docosahexaenoic acid, have tissue protective effects in acute inflammation. Herein, we found that the docosahexaenoic acid-derived mediator resolvin D3 (RvD3): 4S,11R,17S-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid was present in uninjured lungs, and increased significantly 24 to 72 hours after hydrochloric acid-initiated injury.

View Article and Find Full Text PDF

Previous studies demonstrated that bone marrow-derived mesenchymal stem (stromal) cells (MSCs) reduce the severity of acute lung injury in animal models and in an ex vivo perfused human lung model. However, the mechanisms by which MSCs reduce lung injury are not well understood. In the present study, we tested the hypothesis that human MSCs promote the resolution of acute lung injury in part through the effects of a specialized proresolving mediator lipoxin A4 (LXA4).

View Article and Find Full Text PDF

Lipoxins (LX) are proresolving mediators that augment host defense against bacterial infection. Here, we investigated roles for LX in lung clearance of the fungal pathogen Cryptococcus neoformans (Cne). After intranasal inoculation of 5,000 CFU Cne, C57BL/6 and C.

View Article and Find Full Text PDF

Unregulated acute inflammation can lead to collateral tissue injury in vital organs, such as the lung during the acute respiratory distress syndrome. In response to tissue injury, circulating platelet-neutrophil aggregates form to augment neutrophil tissue entry. These early cellular events in acute inflammation are pivotal to timely resolution by mechanisms that remain to be elucidated.

View Article and Find Full Text PDF

Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity increases the risk of pancreatic cancer, and calorie restriction (CR) can prevent this by lowering IGF-1 levels and reducing cancerous lesion formation.
  • In a study, a 30% CR diet for 14 weeks in transgenic mice showed decreased pancreatic lesions and lower levels of cancer markers compared to a control diet.
  • Additionally, reducing IGF-1 through CR or genetic modification led to smaller pancreatic tumors, indicating that targeting IGF-1 could be an effective strategy for preventing pancreatic cancer.
View Article and Find Full Text PDF

Clinical studies show that estrogen receptor-α (ER) expressing tumors tend to have better prognosis, respond to antiestrogen therapy and have wild-type p53. Conversely, tumors with inactivating mutations in p53 tend to have worse outcomes and to be ER-negative and unresponsive to antihormone treatment. Previous studies from our laboratory have shown that p53 regulates ER expression transcriptionally, by binding the ER promoter and forming a complex with CARM1, CBP, c-Jun, RNA polymerase II and Sp1.

View Article and Find Full Text PDF

Insulin-like growth factor-1 (IGF-1) stimulates proliferation, regulates tissue development, protects against apoptosis, and promotes the malignant phenotype in the breast and other organs. Some epidemiological studies have linked high circulating levels of IGF-1 with an increased risk of breast cancer. To study the role of IGF-1 in mammary tumorigenesis in vivo, we used transgenic mice in which overexpression of IGF-1 is under the control of the bovine keratin 5 (BK5) promoter and is directed to either the myoepithelial or basal cells in a variety of organs, including the mammary gland.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2) in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas.

View Article and Find Full Text PDF

The mechanisms whereby cyclooxygenase-2 (COX-2) overexpression may contribute to bladder carcinogenesis remain unknown. We recently developed a transgenic mouse model overexpressing COX-2 under the control of a bovine keratin 5 (BK5) promoter causing a high incidence of transitional cell hyperplasia (TCH) in the bladder with a proportion of lesions progressing to invasive carcinoma. Microarray gene analysis was employed to determine the effects of COX-2 overexpression on gene expression profiles in the urinary bladder.

View Article and Find Full Text PDF

Over-expression of cyclooxygenase-2 (COX-2) and prostaglandin E(2) has been demonstrated to play a significant role in the tumorigenesis of colon, lung, breast, bladder and skin. However, inconsistent and controversial reports on the expression and activity of COX-2 in prostate cancer raised the question of whether COX-2 plays a pivotal role in prostate carcinogenesis. To address this question, we examined the effects of COX-2 inhibition on prostate tumorigenesis in the transgenic adenocarcinoma mouse prostate (TRAMP) model.

View Article and Find Full Text PDF