Mycobacterial shuttle vectors contain dual origins of replication for growth in both Escherichia coli and mycobacteria. One such vector, pSUM36, was re-engineered for high-level protein expression in diverse bacterial species. The modified vector (pSUM-kan-MCS2) enabled green fluorescent protein expression in E.
View Article and Find Full Text PDFPhysiological stress evokes rapid changes in both the innate and adaptive immune response. Immature αβ T cells developing in the thymus are particularly sensitive to stress, with infections and/or exposure to lipopolysaccharide or glucocorticoids eliciting a rapid apoptotic program. MicroRNAs are a class of small, non-coding RNAs that regulate global gene expression by targeting diverse mRNAs for degradation.
View Article and Find Full Text PDFInvariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-gamma and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant alphabeta TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d.
View Article and Find Full Text PDFThe CD3 epsilon subunit of the TCR complex contains two defined signaling domains, a proline-rich sequence and an ITAM. We identified a third signaling sequence in CD3 epsilon, termed the basic-rich stretch (BRS). Herein, we show that the positively charged residues of the BRS enable this region of CD3 epsilon to complex a subset of acidic phospholipids, including PI(3)P, PI(4)P, PI(5)P, PI(3,4,5)P(3), and PI(4,5)P(2).
View Article and Find Full Text PDFT cell receptor signaling processes are controlled by the integrated actions of families of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPases). Several distinct cytosolic protein tyrosine phosphatases have been described that are able to negatively regulate TCR signaling pathways, including SHP-1, SHP-2, PTPH1, and PEP. Using PTPase substrate-trapping mutants and wild type enzymes, we determined that PTPN4/PTP-MEG1, a PTPH1-family member, could complex and dephosphorylate the ITAMs of the TCR zeta subunit.
View Article and Find Full Text PDF