Publications by authors named "Jennifer J Labisch"

Article Synopsis
  • The Orf virus (ORFV) is a notable candidate for vaccines against diseases and cancer, with ongoing clinical testing, necessitating a clarification step during its production.
  • This study explored various filtering options in a high-throughput setting, determining that polypropylene-based Sartopure® PP3 filters are the most effective for improving ORFV recovery.
  • Key factors influencing ORFV yields were identified, including optimal harvest timing and the use of nucleases, leading to a more efficient and scalable clarification process crucial for vaccine development.
View Article and Find Full Text PDF

For steric exclusion chromatography (SXC), hydrophilic stationary phases are used to capture the target molecule in the presence of polyethylene glycol. The influence of the structure and pore size of the stationary phase on the process requirements are not yet well understood. To better understand the SXC process, membranes with different pore sizes that served as a stationary phase were compared for the purification of lentiviral vectors (LVs).

View Article and Find Full Text PDF

A promising new vaccine platform is based on the Orf virus, a viral vector of the genus Parapoxvirus, which is currently being tested in phase I clinical trials. The application as a vaccine platform mandates a well-characterised, robust, and efficient production process. To identify critical process parameters in the production process affecting the virus' infectivity, the Orf virus was subjected to forced degradation studies, including thermal, pH, chemical, and mechanical stress conditions.

View Article and Find Full Text PDF

Lentiviral vectors (LVs) are widely used in clinical trials of gene and cell therapy. Low LV stability incentivizes constant development and the improvement of gentle process steps. Steric exclusion chromatography (SXC) has gained interest in the field of virus purification but scaling up has not yet been addressed.

View Article and Find Full Text PDF

Enveloped viral vectors like lentiviral vectors pose purification challenges due to their low stability. A gentle purification method is considered one of the major bottlenecks for lentiviral vector bioprocessing. To overcome these challenges, a promising method is steric exclusion chromatography which has been used to purify a variety of target molecules.

View Article and Find Full Text PDF

The analysis of the infectious titer of the lentiviral vector samples obtained during upstream and downstream processing is of major importance, however, also the most challenging method to be performed. Currently established methods like flow cytometry or qPCR lack the capability of enabling high throughput sample processing while they require a lot of manual handling. To address this limitation, we developed an immunological real-time imaging method to quantify the infectious titer of anti-CD19 CAR lentiviral vectors with a temporal readout using the Incucyte® S3 live-cell analysis system.

View Article and Find Full Text PDF

Lentiviral vectors have proven their great potential to serve as a DNA delivery tool for gene modified cell therapy and gene therapy applications. The downstream processing of these vectors is however still a great challenge, particularly because of the low stability of the virus. Harvesting and clarification are critical and until now insufficiently characterized steps for lentivirus processing.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: