Publications by authors named "Jennifer J Hawkins"

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD). Prognostic biomarkers reflective of underlying molecular mechanisms are critically needed for effective management of DKD. A three-marker panel was derived from a proteomics analysis of plasma samples by an unbiased machine learning approach from participants (N = 58) in the Clinical Phenotyping and Resource Biobank study.

View Article and Find Full Text PDF

Introduction: Cardiac biomarkers soluble ST2 (sST2) and galectin-3 may reflect cardiac inflammation and fibrosis. It is plausible that these mechanisms may also contribute to the progression of kidney disease. We examined associations of sST2 and galectin-3 with kidney function decline in participants with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression.

View Article and Find Full Text PDF

A previous meta-analysis of genome-wide association data by the Cohorts for Heart and Aging Research in Genomic Epidemiology and CKDGen consortia identified 16 loci associated with eGFR. To define how each of these single-nucleotide polymorphisms (SNPs) could affect renal function, we integrated GFR-associated loci with regulatory pathways, producing a molecular map of CKD. In kidney biopsy specimens from 157 European subjects representing nine different CKDs, renal transcript levels for 18 genes in proximity to the SNPs significantly correlated with GFR.

View Article and Find Full Text PDF