This study compares bovine chondrocytes harvested from four different animal locations--nasoseptal, articular, costal, and auricular--for tissue-engineered cartilage modeling. While the work serves as a preliminary investigation for fabricating a human ear model, the results are important to tissue- engineered cartilage in general. Chondrocytes were cultured and examined to determine relative cell proliferation rates, type II collagen and aggrecan gene expression, and extracellular matrix production.
View Article and Find Full Text PDFStudies of gene expression from bone, cartilage, and other tissues are complicated by the fact that their RNA, collected and pooled for analysis, often represents a wide variety of composite cells distinct in individual phenotype, age, and state of maturation. Laser capture microdissection (LCM) is a technique that allows specific cells to be isolated according to their phenotype, condition, or other marker from within such heterogeneity. As a result, this approach can yield RNA that is particular to a subset of cells comprising the total cell population of the tissue.
View Article and Find Full Text PDFThis article presents models of human phalanges and small joints developed by tissue engineering. Biodegradable polymer scaffolds support growth of osteoblasts, chondrocytes, and tenocytes after implantation of the models in athymic mice. The cell-polymer constructs are vascularized by the host mice, form new bone, cartilage, and tendon with characteristic gene expression and protein synthesis and secretion, and maintain the shape of human phalanges with joints.
View Article and Find Full Text PDFGene expression of osteopontin (OPN) has been investigated in mice by application of laser capture microdissection (LCM) and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. LCM permits individual cells to be isolated ("captured") from tissue sections for molecular analyses. In this study, chondrocytes were captured from growth plate zones in frozen sections of tibiae from 1-11-day-old postnatal mice.
View Article and Find Full Text PDF