Life is constructed primarily using a toolbox of 20 canonical amino acids-relying upon these building blocks for the assembly of proteins and peptides that regulate nearly every cellular task, including cell structure, function, and maintenance. While Nature continues to be a source of inspiration for drug discovery, medicinal chemists are not beholden to only 20 canonical amino acids and have begun to explore non-canonical amino acids (ncAAs) for the construction of designer peptides with improved drug-like properties. However, as our toolbox of ncAAs expands, drug hunters are encountering new challenges in approaching the iterative peptide design-make-test-analyze cycle with a seemingly boundless set of building blocks.
View Article and Find Full Text PDFNucleic acid assays are not typically deployable in point-of-care settings because they require costly and sophisticated equipment for the control of the reaction temperature and for the detection of the signal. Here we report an instrument-free assay for the accurate and multiplexed detection of nucleic acids at ambient temperature. The assay, which we named INSPECTR (for internal splint-pairing expression-cassette translation reaction), leverages the target-specific splinted ligation of DNA probes to generate expression cassettes that can be flexibly designed for the cell-free synthesis of reporter proteins, with enzymatic reporters allowing for a linear detection range spanning four orders of magnitude and peptide reporters (which can be mapped to unique targets) enabling highly multiplexed visual detection.
View Article and Find Full Text PDFAt the forefront of synthetic endeavors in the pharmaceutical industry, including drug discovery and high-throughput screening, timelines are tight and large quantities of pure chemical targets are rarely available. In this regard, the development of novel and increasingly challenging chemistries requires a commensurate level of innovation to develop reliable analytical assays and purification workflows with rapid turnaround that enables accelerated pharmacological evaluation. A small-scale automation platform enabling high-throughput analysis and purification to streamline the selection of candidate leads would be a transformative advance.
View Article and Find Full Text PDFThis retrospective case series describes the radiographic features of suspected suture-associated cystic calculi in six dogs with a history of at least one or multiple prior cystotomies. One of the dogs presented twice. Suspected suture-associated cystic calculi were multifocal, short, predominantly linear mineral opacities localized in the center of the urinary bladder on abdominal radiographs.
View Article and Find Full Text PDFObjectives: Ideal long-term vocal fold augmentation materials should be biocompatible, easily administered, allow tissue integration for long-term effect, and remain at the site of injection. A novel silk protein particle suspended in hyaluronic acid (Silk-HA) has been developed specifically for vocal fold augmentation to address this unmet need. This article presents the 6-month, preclinical findings of a canine vocal fold injection trial for Silk-HA.
View Article and Find Full Text PDFBackground: Pregnancy resource centers (PRCs) are nonprofit organizations with a primary mission of promoting childbirth among pregnant women. Given a new state grant program to publicly fund PRCs, we analyzed Georgia PRC websites to describe advertised services and related health information.
Methods: We systematically identified all accessible Georgia PRC websites available from April to June 2016.
Our previously reported structures of calpain bound to its endogenous inhibitor calpastatin have motivated the use of aziridine aldehyde-mediated peptide macrocyclization toward the design of cyclic peptides and peptidomimetics as calpain inhibitors. Inspired by nature's hint that a β-turn loop within calpastatin forms a broad interaction around calpain's active site cysteine, we have constructed and tested a library of 45 peptidic compounds based on this loop sequence. Four molecules have shown reproducibly low micromolar inhibition of calpain-2.
View Article and Find Full Text PDFWe have developed a strategy for synthesizing passively permeable peptidomimetic macrocycles. The cyclization chemistry centers on using aziridine aldehydes in a multicomponent reaction with peptides and isocyanides. The linker region in the resulting product contains an exocyclic amide positioned α to the peptide backbone, an arrangement that is not found among natural amino acids.
View Article and Find Full Text PDFAziridine aldehyde dimers, peptides, and isocyanides participate in a multicomponent reaction to yield peptide macrocycles. We have investigated the selectivity and kinetics of this process and performed a detailed analysis of its chemoselectivity. While the reactants encompass all of the elements of the traditional Ugi four-component condensation, there is a significant deviation from the previously proposed mechanism.
View Article and Find Full Text PDFThere is an ever-increasing interest in synthetic methods that not only enable peptide macrocyclization, but also facilitate downstream application of the synthesized molecules. We have found that aziridine amides are stereoelectronically attenuated in a macrocyclic environment such that non-specific interactions with biological nucleophiles are reduced or even shut down. The electrophilic reactivity, revealed at high pH, enables peptide sequencing by mass spectrometry, which will further broaden the utility of aziridine amide-containing libraries of macrocycles.
View Article and Find Full Text PDFThe first solid-phase parallel synthesis of macrocyclic peptides using three-component coupling driven by aziridine aldehyde dimers is described. The method supports the synthesis of 9- to 18-membered aziridine-containing macrocycles, which are then functionalized by nucleophilic opening of the aziridine ring. This constitutes a robust approach for the rapid parallel synthesis of macrocyclic peptides.
View Article and Find Full Text PDFCyclic peptides have wide utility in the biological sciences. As conformationally locked analogs of the parent linear peptides, they possess greater stability under physiological conditions and increased binding affinity for their targets. As investigations of biological processes often require reporter molecules and functional readouts, chemical probes are commonly appended with functional groups that allow for conjugation to biological entities.
View Article and Find Full Text PDFβ-Sheets account for over 30 % of all secondary structural conformations found in proteins. The intramolecular hydrogen bonding that exists between the two peptide strands is imperative in maintaining this secondary structure. With the proper design, cyclic peptides may act as scaffolds emulating active β-sheet regions, enabling investigation of their importance in molecular recognition and protein aggregation.
View Article and Find Full Text PDFThe factors determining diastereoselectivity observed in the multicomponent conversion of amino acids, aziridine aldehyde dimers, and isocyanides into chiral piperazinones have been investigated. Amino acid-dependent selectivity for either trans- or cis-substituted piperazinone products has been achieved. An experimentally determined diastereoselectivity model for the three-component reaction driven by aziridine aldehyde dimers has predictive value for different substrate classes.
View Article and Find Full Text PDFThe concept of site-specific integration of fragments into macrocyclic entities has not yet found application in the realm of synthetic chemistry. Here we show that the reduced amidicity of aziridine amide bonds provides an entry point for the site-specific integration of amino acids and peptide fragments into the homodetic cyclic peptide architecture. This new synthetic operation improves both the convergence and divergence of cyclic peptide synthesis.
View Article and Find Full Text PDFMolecular scaffolds have been shown to facilitate and stabilise secondary structural turn elements, with a central core-arranging functionality in a defined three-dimensional orientation. In a peptide-based molecular imaging probe, this approach is of particular value as it would essentially "hide" a metal radioisotope within the ligand framework, making the labelling element a critical component of the receptor-bound structure. Starting from a 1,2-diaminoethane loaded 2-chlorotrityl resin, a versatile set of triamine ligand systems were synthesised by using solid-phase Fmoc-based peptide chemistry.
View Article and Find Full Text PDFHistidine is a convenient tridentate chelator used in the synthesis of technetium-99m radiopharmaceuticals, as it can be pendantly attached to a biomolecule for molecular imaging applications. Once coordinated, it forms a neutral complex that is capable of forming diastereomers at the alpha amine of the histidine. This is demonstrated through the synthesis and characterization of four different histidine chelators; three small molecule chelators, which consist of a benzylated histidine at the alpha amine, and one modified dipeptide, containing a phenylalanine derivative at the C-terminus and a histidine at the N-terminus.
View Article and Find Full Text PDFMultivalent nanoparticles have several key advantages in terms of solubility, binding avidity, and uptake, making them particularly well suited to molecular imaging applications. Herein is reported the stepwise synthesis and characterization of NIR viral nanoparticles targeted to gastrin-releasing peptide receptors that are over-expressed in human prostate cancers. The pan-bombesin analogue, [β-Ala11, Phe13, Nle14]bombesin-(7-14), is conjugated to cowpea mosaic virus particles functionalized with an NIR dye (Alexa Fluor 647) and polyethylene glycol (PEG) using the copper(I)-catalyzed azide-alkyne cycloaddition reaction.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
February 2012
Purpose: To determine the safety and outcomes of induction chemotherapy followed by dose-escalated intensity-modulated radiotherapy (IMRT) with concomitant chemotherapy in locally advanced squamous cell cancer of the larynx and hypopharynx (LA-SCCL/H).
Methods And Materials: A sequential cohort Phase I/II trial design was used to evaluate moderate acceleration and dose escalation. Patients with LA-SCCL/H received IMRT at two dose levels (DL): DL1, 63 Gy/28 fractions (Fx) to planning target volume 1 (PTV1) and 51.
Purpose: This study sought to define the recommended dose of JS1/34.5-/47-/GM-CSF, an oncolytic herpes simplex type-1 virus (HSV-1) encoding human granulocyte-macrophage colony-stimulating factor (GM-CSF), for future studies in combination with chemoradiotherapy in patients with squamous cell cancer of the head and neck (SCCHN).
Experimental Design: Patients with stage III/IVA/IVB SCCHN received chemoradiotherapy (70 Gy/35 fractions with concomitant cisplatin 100 mg/m(2) on days 1, 22, and 43) and dose-escalating (10(6), 10(6), 10(6), 10(6) pfu/mL for cohort 1; 10(6), 10(7), 10(7), 10(7) for cohort 2; 10(6), 10(8), 10(8), 10(8) for cohort 3) JS1/34.
The imaging of molecular markers associated with disease offers the possibility for earlier detection and improved treatment monitoring. Receptors for gastrin-releasing peptide are overexpressed on prostate cancer cells offering a promising imaging target, and analogs of bombesin, an amphibian tetradecapeptide have been previously demonstrated to target these receptors. Therefore, the pan-bombesin analog [β-Ala11, Phe13, Nle14]bombesin-(7-14) was conjugated through a linker to dye-functionalized superparamagnetic iron oxide nanoparticles for the development of a new potential magnetic resonance imaging probe.
View Article and Find Full Text PDFThrombospondin-1 (TSP-1) and transforming growth factor-beta1 (TGF-beta1) are both implicated in the pathogenesis of in-stent restenosis. This study evaluated the hypothesis that the HMG-CoA reductase inhibitor fluvastatin inhibits TGF-beta1 induced TSP-1 expression via inhibition of p38 mitogen activated protein kinase (MAPK) phosphorylation in human coronary artery smooth muscle cells (HCASMC) and may therefore have anti-restenosis potential. Fluvastatin significantly reduced TSP-1 mRNA and protein expression in HCASMC in a concentration-dependent manner with a significant reduction in expression observed after treatment with 0.
View Article and Find Full Text PDF